1. Antunes, M., & Biala, G. (2012). The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cognitive Processing, 13(2), 93-110. [DOI:10.1007/s10339-011-0430-z] [PMID] [PMCID] [
DOI:10.1007/s10339-011-0430-z]
2. Bakkialakshmi, S., & Barani, V. (2013). Characterization of the interaction between two anti-viral drugs and Egg albumin . International Journal of Chemistry and Pharmaceutical Sciences, 1(1), 1-5.
3. Cho, S. Y., Park, S. J., Kwon, M. J., Jeong, T. S., Bok, S. H., Choi, W. Y., et al. (2003). Quercetin suppresses proinflammatory cytokines production through MAP kinesis and NF-kappa B pathway in lipopolysaccharide-stimulated macrophage. Molecular and Cellular Biochemistry, 243(1-2), 153-60. [DOI:10.1023/A:1021624520740] [PMID] [
DOI:10.1023/A:1021624520740]
4. Choi, H. S., Park, M. S., Kim, S. H., Hwang, B. Y., Lee, C. K., & Lee, M. K. (2010). Neuroprotective effects of herbal ethanol extracts from gynostemma pentaphyllum in the 6-hydroxydopamine-lesioned rat model of parkinson's disease. Molecules, 15(4), 2814-24. [DOI:10.3390/molecules15042814] [PMID] [
DOI:10.3390/molecules15042814]
5. Ciobica, A., Hritcu, L., Artenie, V., Stoica, B., & Bild, V. (2009). Effects of 6-OHDA infusion into the hypothalamic paraventricular nucleus in mediating stress-induced behavioural responses and oxidative damage in rats. Acta Endocrinology, 5(4), 425-36. [DOI:10.4183/aeb.2009.425] [
DOI:10.4183/aeb.2009.425]
6. Danielson, S. R., & Andersen, J. K. (2008). Oxidative and nitrative protein modifications in Parkinson's disease. Free Radical Biology and Medicine, 44(10), 1787-94. [DOI:10.1016/j.freeradbiomed.2008.03.005] [PMID] [PMCID] [
DOI:10.1016/j.freeradbiomed.2008.03.005]
7. de Lima, M. N. M., Presti-Torres, J., Dornelles, A., Scalco, F. S., Roesler, R., Garcia, V. A., t al. (2011). Modulatory influence of dopamine receptors on consolidation of object recognition memory. Neurobiology of Learning and Memory, 95, 305-10. [DOI:10.1016/j.nlm.2010.12.007] [PMID] [
DOI:10.1016/j.nlm.2010.12.007]
8. Debeir, T., Ginestet, L., François, C., Laurens, S., Martel, J. C., Chopin, P., et al. (2005). Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Experimental Neurology, 193(2), 444-54. [DOI:10.1016/j.expneurol.2005.01.007] [PMID] [
DOI:10.1016/j.expneurol.2005.01.007]
9. Dhawan, S., Kapil, R., & Singh, B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. Journal of Pharmacy and Pharmacology, 63(3), 342-51. [DOI:10.1111/j.2042-7158.2010.01225.x] [PMID] [
DOI:10.1111/j.2042-7158.2010.01225.x]
10. Díaz, M., Vaamonde, L., & Dajas, F. (2015). Assessment of the protective capacity of nanosomes of quercetin in an experimental model of parkinson's disease in the Rat. General Medicine, 3(5), 207. [DOI:10.4172/2327-5146.1000207] [
DOI:10.4172/2327-5146.1000207]
11. Dong, Y., Wang, J., Feng, D.Y., Qin, H. Z, Wen, H., Yin, Z. M., et al. (2014). Protective effect of quercetin against oxidative stress and brain edema in an experimental rat model of subarachnoid hemorrhage. International Journal of Medical Sciences, 11(3), 282-90. [DOI:10.7150/ijms.7634] [PMID] [PMCID] [
DOI:10.7150/ijms.7634]
12. Fukuzawa K., & Tokumura, A. (1976). Glutathione peroxidase activity in tissues of vitamin E-deficient mice. Journal of Nutritional Science and Vitaminology, 22(5), 405-407. [DOI:10.3177/jnsv.22.405] [PMID] [
DOI:10.3177/jnsv.22.405]
13. Ganesan, P., Ko, H. M., Kim, I. S., & Choi, D. K. (2015). Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson's disease models. International Journal of Nanomedicine, 10, 6757-72. [DOI:10.2147/IJN.S93918] [PMID] [PMCID] [
DOI:10.2147/IJN.S93918]
14. Genet, S., Kale, R. K., & Baquer, N. Z. (2002). Alterations in antioxidant enzymes and oxidative damage in experimental diabetic rat tissues: Effect of vanadate and fenugreek (Trigonella foenum graecum). Molecular and Cellular Biochemistry, 236(1-2), 7-12. [DOI:10.1023/A:1016103131408] [PMID] [
DOI:10.1023/A:1016103131408]
15. Herman, E., & Kevin, H. C. (1989). Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407-21.
16. Hritcu, L., & Ciobica, A. (2013). Intranigral lipopolysaccharide administration induced behavioral deficits and oxidative stress damage in laboratory rats: Relevance for Parkinson's disease. Behavioural Brain Research, 253, 25-31. [DOI:10.1016/j.bbr.2013.07.006] [PMID] [
DOI:10.1016/j.bbr.2013.07.006]
17. Hritcu, L., Ciobica, A., & Artenie, V. (2008). Effects of right-unilateral 6-hydroxydopamine infusion-induced memory impairment and oxidative stress: Relevance for Parkinson's disease. Open Life Science, 3(3), 250-7. [DOI:10.2478/s11535-008-0023-8] [
DOI:10.2478/s11535-008-0023-8]
18. Hritcu, L., Foyet, H. S., Stefan, M., Mihasan, M., Asongalem, A. E., & Kamtchouing, P. (2011). Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Journal of Ethnopharmacology, 137, 585-91. [DOI:10.1016/j.jep.2011.06.008] [PMID] [
DOI:10.1016/j.jep.2011.06.008]
19. Junghanns, J. U. A., & Müller, R. H. (2008). Nanocrystal technology, drug delivery and clinical applications. International Journal of Nanomedicine, 3(3), 295-310. [PMID] [PMCID] [
PMID] [
PMCID]
20. Kakran, M., Sahoo, N. G., & Li, L. (2011). Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids and Surfaces B: Biointerfaces, 88(1), 121-30. [DOI:10.1016/j.colsurfb.2011.06.020] [PMID] [
DOI:10.1016/j.colsurfb.2011.06.020]
21. Kakran, M., Sahoo, N. G., Li, L., & Muller, R. H. (2012a). Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technology, 223, 59-64. [DOI:10.1016/j.powtec.2011.08.021] [
DOI:10.1016/j.powtec.2011.08.021]
22. Kakran, M., Sahoo, N. G., Li, L., & Muller, R. H. (2012b). Fabrication of quercetin nanocrystals: Comparison of different methods. European Journal of Pharmaceutics and Biopharmaceutics, 80(1), 113-21. [DOI:10.1016/j.ejpb.2011.08.006] [PMID] [
DOI:10.1016/j.ejpb.2011.08.006]
23. Kamada, C., da Silva, E. L., Ohnishi-Kameyama, M., Moon, J. H., & Terao, J. (2005). Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radical Research, 39(2), 185-94. [DOI:10.1080/10715760400019638] [PMID] [
DOI:10.1080/10715760400019638]
24. Krishnakumar, K., John, A., & Dineshkumar, B. (2015). Quercetin nanocrystal formulation: In vitro anti-tumor activity against dalton lymphoma cells. Journal of Drug Discovery and Therapeutics, 3(25), 9-17.
25. Kuruvilla, K. P., Nandhu, M., Paul, J., & Paulose, C. (2013). Oxidative stress mediated neuronal damage in the corpus striatum of 6-hydroxydopamine lesioned parkinson's rats: Neuroprotection by serotonin, GABA and bone marrow cells supplementation. Journal of the Neurological Sciences, 331(1), 31-7. [DOI:10.1016/j.jns.2013.04.020] [PMID] [
DOI:10.1016/j.jns.2013.04.020]
26. Lefter, R., Cojocaru, D., Ciobică, A., Pauleț, I., Șerban, I., & Anton, E. (2014). Aspects of animal models for major neuropsychiatric disorders. Archives of Biological Sciences Belgrade, 66(3), 1105-15. [DOI:10.2298/ABS1403105L] [
DOI:10.2298/ABS1403105L]
27. Miller, R. L., James-Kracke, M., Sun, G. Y., & Sun, A. Y. (2009). Oxidative and inflammatory pathways in Parkinson's disease. Neurochemical Research, 34(1), 55-65. [DOI:10.1007/s11064-008-9656-2] [PMID] [
DOI:10.1007/s11064-008-9656-2]
28. Paxinos, G., & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. Cambridge, Massachusetts: Academic Press. [PMCID] [
PMCID]
29. Rizelio, V., Szawka, R. E., Xavier, L. L., Achaval, M., Rigon, P., Saur, L., Matheussi, F., et al. (2010). Lesion of the subthalamic nucleus reverses motor deficits but not death of nigrostriatal dopaminergic neurons in a rat 6-hydroxydopamine-lesion model of Parkinson's disease. Brazilian Journal of Medical and Biological Research, 43(1), 85-95. [DOI:10.1590/S0100-879X2009007500020] [
DOI:10.1590/S0100-879X2009007500020]
30. Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition, 45(4), 287-306. [DOI:10.1080/1040869059096] [PMID] [
DOI:10.1080/1040869059096]
31. Shanmugam, R., Gowthamarajan, K., Priyanka, D. L., Madhuri, K., & Karri, N. (2013). Bioanalytical method development and validation for herbal quercetin in nano formulation by RP-UFLC in rabbit plasma. Journal of Bioequivalence Bioavailability, 5, 191-6.
32. Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y., & Oh, M. S. (2009). Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease. Journal of Ethnopharmacology, 126(2), 361-5. [DOI:10.1016/j.jep.2009.08.023] [PMID] [
DOI:10.1016/j.jep.2009.08.023]
33. Sun, B., & Yeo, Y. (2012). Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Current Opinion in Solid State & Materials Science, 16(6), 295-301. [DOI:10.1016/j.cossms.2012.10.004] [PMID] [PMCID] [
DOI:10.1016/j.cossms.2012.10.004]