Introduction: The role of midbrain reticular formation, which includes the nucleus cuneiformis (NCF), as a crucial antinociceptive region in descending pain modulation has long been investigated. In this study, we tried to highlight the role of NCF in morphine-induced antinociception in formalin-induced pain model in rats. Methods:
A total of 201 male Wistar rats weighing 260-310 g were used in this study. The effective dose of morphine in systemic administration (intraperitoneal i.p.) was determined after a dose- and time-response protocol. In consequent groups, bilateral electrolytic lesion (500 μA, 30 sec) or reversible inactivation (lidocaine 2%) were used in the NCF before systemic administration of morphine, and then, the nociceptive test was immediately carried out. Results:
The results showed that administration of 6 mg/kg morphine, 30 min before the formalin test, is the best dose- and time-response set in these experiments. The obtained data also indicated that bilateral electrical destruction or reversible inactivation of the NCF significantly decreased antinociceptive responses of systemic morphine (6 mg/kg i.p.) during the second phase of formalin test (P<0.05). Discussion:
Therefore, it seems that opioid receptors located in the NCF may be involved in modulation of central sensitization which occurred in inflammatory pain in rats.
Type of Study:
Original |
Subject:
Clinical Neuroscience Received: 2012/03/29 | Published: 2011/10/15