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Brain-Computer Interface (BCI) is a system that enables users to transmit commands to the 
computer using their brain activity recorded by electroencephalography. In a Hybrid Brain-
Computer Interface (HBCI), a BCI control signal combines with one or more BCI control 
signals or with Human-Machine Interface (HMI) biosignals to increase classification accuracy, 
boost system speed, and improve user’s satisfaction. HBCI systems are categorized according 
to the type of combined signals and the combination technique (simultaneous or sequential). 
They have been used in several applications such as cursor control, target selection, and 
spellers. Increasing the number of articles published in this field indicates the significance 
of these systems. In this paper, different HBCI combinations, their important features, and 
potential applications are discussed. In most cases, the combination of a BCI control signal 
with a HMI biosignal yields higher information transfer rate than two BCI control signals.
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A B S T R A C T

Highlights 

● In the hybrid brain-computer interface system, a brain-computer interface signal combines with other brain-computer 
interface signals or with human-machine interface biosignals.

● Sequential combination reduces errors and simultaneous combination increases the information transfer rate.

● Combination of brain-computer interface signal with human-machine interface biosignal yields higher information trans-
fer rate than two brain-computer interface signals.

● The EEG+Eye Tracker and SSVEP+ERD have achieved highest and lowest information transfer rate, respectively.

● The EEG+NIRS  has the lowest accuracy in comparison with other hybrid brain-computer interface combinations.
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1. Introduction

Brain-Computer Interface (BCI) system 
provides a non-muscular communication 
channel by creating a direct path between 
brain and computer aimed at communicat-
ing with environment for people suffering 

from severe paralysis, muscular atrophy, amyotrophic 
lateral sclerosis or brainstem stroke. BCI consists of 
sensors and signal processing tools that directly con-
vert brain activity into commands or messages (Müller-
Putz et al., 2012; Guger, Allison, & Müller Putz, 2015). 
The block diagram of the BCI system is illustrated in 
Figure 1. Brain activity is measurable using several 
approaches such as electroencephalography, magneto-
encephalography, functional Magnetic Resonance Im-
aging (fMRI), Electrocorticography (ECoG), and Near-
Infrared Spectroscopy (NIRS) (Amiri, Rabbi, Azinfar, 
& Fazel-Rezai 2013).

Electroencephalogram (EEG) signal is often consid-
ered as the input in most BCI systems. EEG electrodes 
are placed on the scalp and special devices record the 
electric field of neural activity. Six brain rhythms can 
be distinguished in EEG signal based on the differenc-
es in frequency ranges: Delta (1-4 Hz), theta (4-7 Hz), 
alpha (8-12 Hz), mu (8-13 Hz), beta (12-30 Hz), and 
gamma (25-100 Hz). Delta rhythm includes all rhythms 

below 3.5 Hz and is generated during deep sleep, by 
children or the people with brain disorders.

Theta rhythm is further acquired from temporal and 
parietal areas and it is visible in children and some 
adults at the time of stress, disappointment, and heart-
break. Alpha rhythm occurs in awake and eyes closed 
relax condition. It is significantly recorded from the oc-
cipital lobes, but it can also be acquired from parietal 
and frontal regions. This rhythm completely disappears 
during sleep and when the subject is attracted to a par-
ticular mental activity in the waking state, it is replaced 
with asynchronous waves with higher frequency and 
lower amplitude. Beta rhythm is mostly acquired from 
parietal and frontal areas.

It takes place at frequencies as high as 50 Hz in strong 
brain activities. It is divided into Beta I and Beta II. 
Beta I, with the frequency of about twice as Alpha 
rhythm, and influenced by similar mental activities af-
fecting the alpha rhythm. Beta II appears in the cen-
tral nervous system during intense activities and in the 
time of stress. The alpha activity, which is recorded 
from the sensory-motor areas, is called mu activity. 
Gamma rhythm acquired from somatosensory cortex is 
involved in high-level tasks such as cognitive functions 
and it is important for learning, memory, and data pro-
cessing (Amiri et al., 2013; Bharne & Kapgate, 2015). 

A

Plain Language Summary 

Individuals with ALS, brainstem stroke, spinal cord injury and patients with numerous diseases may lose most or all 
voluntary muscle control so that sometimes they will not be able to speak well. The Brain-Computer Interface (BCI) 
system provides an alternative pathway between their brain and the system and enables these people to control their 
environment. It has been used in several applications such as cursor control, target selection, and spellers. Since a 
BCI system based on one method may not work on all subjects, the hybrid Brain-Computer Interface (HBCI) system 
has been introduced. In a HBCI system, a BCI control signal combines with one or more BCI control signals or with 
Human-Machine Interface (HMI) biosignals. Increasing the number of articles published in this field indicates the 
significance of these systems.

In this paper, different HBCI combinations, their important features, and potential applications are discussed. Clas-
sification accuracy and Information Transfer Rate (ITR) are two important parameters to evaluate a BCI system. It is a 
trade-off between these two parameters; as one increases, the other one decreases and vice versa. Therefore, concern-
ing the ultimate goal and depending on the application, the appropriate combination type should be determined. This 
paper makes it easier to choose the optimal combination, by illustrating the correct location of the accuracy and the 
ITR corresponding to each combination. Results of this study show that in most cases, the combination of a BCI signal 
with a HMI biosignal yields higher ITR than two BCI control signals. The highest and lowest ITR were achieved us-
ing EEG+Eye Tracker and SSVEP+ERD, respectively. The combination of EEG signal and NIRS had also the lowest 
accuracy, while the accuracy values of other hybrid systems did not differ much from each other and they were located 
within the range of 70% to 100%.
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In general, BCI systems are categorized based on the 
brain activity patterns into four different types: P300 
component of event-related potential, Steady-State Vi-
sual Evoked Potential (SSVEP), SCP, and Event-Relat-
ed Synchronization (ERS)/ Event-Related Desynchro-
nization (ERD).

P300 is an Event-Related desynchronization Potential 
(ERP) that appears approximately 300 ms after a vi-
sual, auditory or tactile stimulation. Since P300-based 
BCI systems are vulnerable against noise, they require 
averaging of ERP responses from several stimuli. This 
reduces the speed and Information Transfer Rate (ITR). 
These systems also need less training and they have 
high validity among users and patients (Fazel-Rezai 
& Ahmad, 2011; Fazel-Rezai et al., 2012; Wolpaw & 
Wolpaw, 2012).

Visual Evoked Potentials (VEPs) are brain oscillations 
that occur after receiving a visual stimulation. Steady-
State Visual Evoked Potential (SSVEP) is a kind of 
VEP that occurs in response to stimulus with frequen-
cies higher than 6 Hz. Although higher stimulation fre-
quencies reduce fatigue and discomfort, the recognition 

of the signal is challenging. In general, SSVEP-based 
BCI systems have many advantages such as better clas-
sification accuracy, higher ITR, and fewer numbers of 
required electrodes, compared to other methods such as 
P300. These systems do not need training and if neces-
sary, the required time for training is very short. Al-
though SSVEP-based systems are faster than systems 
based on P300, they have shortcomings such as inap-
propriateness for patients with epilepsy, requirement of 
precise control of eye muscles, and the need for high-
speed hardware (Guger et al., 2012; Guger et al., 2015).

Slow-Cortical Potentials (SCP) are negative slow po-
tential changes in EEG signals acquired in an imagined 
or actual movement from sensory-motor cortex of the 
brain (Allison et al., 2012; Faller, 2012). These poten-
tials belong to the part of EEG signals with frequencies 
less than 1 Hz and are a reflection of cortical polariza-
tion. The employment of these potentials is limited due 
to reasons such as long duration training time, high er-
ror risk, and poor dimensional control.

Mu and Beta rhythms, both recorded from the sensory-
motor cortex, are caused by sensory stimulation or mo-

Figure 1. Block diagram of a BCI system
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tor behavior. These rhythms include two types of am-
plitude fluctuations named ERD and ERS. A voluntary 
movement causes a limited asynchronicity in the lower 
bands of Mu and Beta that is called ERD and it takes 
place about two seconds before starting the movement. 
In fact, the decrease in neuronal synchronization re-
duces power in specific frequency bands and eventually 
reduces the signal amplitude. After a voluntary move-
ment, with an increase in synchronization of neurons, 
the power is increased in brain rhythms and reaches 
its maximum level, 600 ms after the movement that is 
called ERS. The Motor Imagery (MI) is also a way to 
change in ERD/ERS favored in BCI applications. This 
method requires more training and may not applicable 
on some subjects (Pfurtscheller & Da Silva, 1999).

From another perspective, BCI systems are catego-
rized into synchronous and asynchronous. In a synchro-
nous system, the extraction and processing of signal 
features are prescheduled. It is based on the protocol 
that defines the starting and ending of each operation 
with specified duration. In an asynchronous system, 
called automated system, feature extraction and pro-
cessing do not necessarily follow a fixed schedule. 

2. Methods

2.1. Hybrid brain- computer interface systems

Since a BCI system based on one method may not 
work on all subjects, the Hybrid BCI (HBCI) system is 
introduced and this area is of interest to many research-
ers over time. 

The current study aimed at reviewing and analyz-
ing the current state-of-the-art HBCI studies. In this 
review, articles were sought from the Google scholar 
database. Inclusion criteria were journal articles writ-
ten in English from 2010 to December 2016. Other 
publication forms (eg, books, proceeding papers, mas-
ter’s and doctoral dissertations, unpublished working 
papers, newspapers, etc.) were not included. Keywords 
used in search engines were “Hybrid” AND “Brain 
computer interface”, “Hybrid” AND “Brain machine 
interface”, “Brain computer interface” AND “Electro-
encephalography”, “Brain computer interface” AND 
“Electrooculography”, “Brain computer interface” 
AND “Electromyography”, “Brain computer inter-
face” AND “Near-infrared spectroscopy”, “Brain com-
puter interface” AND “evoked potential” OR “Brain 
computer interface” AND “Steady-state somatosensory 
evoked potential”.

After conducting the keyword search, some papers 
were found more than one time with different key-
words. Therefore, duplicates were excluded. Figure 2 
shows the total number of articles published in different 
years based on Google Scholar database. There were 13 
articles in 2010 and this number significantly rose in the 
following years. A total number of 60 and 61 articles 
were published in this context in 2015 and 2016, respec-
tively. Increasing the number of articles published in 
the realm of HBCI indicates the high efficiency hybrid 
brain-computer interface of these systems.

In a HBCI, a BCI control signal combines with one 
or more BCI control signals or with Human Machine 
Interface (HMI) biosignals. HBCI systems are catego-
rized according to the type of signals combined and the 
combination technique (Simultaneous/sequential). In 
simultaneous combination, the systems work concur-
rently with each other, while in sequential combination 
they act as time-sharing. In a sequential combination, 
the target is selected among several options by the first 
system and the second system does the process on the 
choice. A comprehensive block diagram with different 
modes of system operation is presented in Figure 3. 
This Figure completely describes the concept of system 
operation in both modes; simultaneous and sequential. 
The timing of stimulation in operation modes is depict-
ed in this Figure. 

In general, the most important goals of combining 
signals in HBCI systems are to increase the classifica-
tion accuracy, enhancing system speed, improving user 
satisfaction, and overcoming the disadvantages of BCI 
systems. In contrast, most of these hybrid systems are 
associated with greater complexity.

2.2. Types of HBCI Systems

To date, different combinations are employed in 
HBCI systems. Figure 4 shows the number of articles 
published in different years based on the type of com-
bination, obtained from Google Scholar database. This 
Figure indicates that in the early years of the employ-
ment of HBCI systems, the combination of BCI control 
signals was used in various studies. Over the time, the 
combination of BCI control signals with HMI biosig-
nals was also considered. Figure 4 shows the gradual 
increase in the use of Electromyogram (EMG), Elec-
trooculogram (EOG), and Steady-State Somatosensory 
Evoked Potentials (SSSEP) in HBCI systems over the 
time. However, the use of NIRS and eye tracker in-
creased dramatically, especially in recent years. A sum-
mary of studies in the field of HBCI systems with an 
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emphasis on the specific characteristics of each study is 
noted in Table 1. In the following, with the introduction 
of a variety of signal combinations in HBCI systems, 
methods and results of different studies are investigated.

2.2.1. The combination of P300 and SSVEP

Since both SSVEP and P300 are evoked by visual 
stimulation and none of them requires training, the 
combination of these two signals is used in various 
applications such as target selection, movement con-

trol, and spellers. In order to control the direction and 
speed of the movement, simultaneous combination of 
SSVEP and P300 is associated with shortages such as 
low speed and ignoring the resting state in synchronous 
systems (Bi, Lian, Jie, Lai, & Liu, 2014). 

P300, associated with high ITR, is considered the 
main mechanism of data transfer in many applications, 
including spellers. One of the solutions to increase ITR 
in P300-based spellers is reducing the number of flash-

Figure 2. The Annual publication of articles based on Google Scholar database in the area of HBCI systems
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es. There is a compromise between ITR and classifica-
tion accuracy that by reducing one of them, the other 
one increases. In order to increase ITR, simultaneous 
combination of P300 and SSVEP is used. To this end, 
all characters are divided into subareas by two tech-
niques: Row/Column (RC) or Subarea/Location (SL).

All of the characters in each subarea flicker at the 
same frequency. At the same time, cues highlight the 

same location in each subarea in a pseudorandom se-
quence. Thus, only N1 flash codes for P300 and N2 
frequencies for SSVEP are required to achieve the 
spelling of N1×N2 items. The RC mode is a better 
choice compared with SL mode, because of its higher 
average, faster speed, and lower standard deviation of 
ITR (Yin et al., 2014). To increase classification accu-
racy, simultaneous combination of SSVEP and P300 
is used to reduce errors occurred in rows or columns 
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Figure 4. The annual publication of articles based on the type of HBCI combination obtained from Google Scholar database

Table 1. Comparison of the specific characteristics of The Studies in the field of HBCI

ResultApplicationClassifica-
tion

Combina-
tion Type

Combined 
Control 
Signals

Paper

Fast and accurate detection of the con-
trol state of subjectObject controlFLDA, BLDASequentialP300+SSVEPYin et al. (2014)

Increase the classification accuracySpellerSWLDASequentialP300+SSVEPWang et al. (2015)

Reduce errors+increase the classification 
accuracy and ITRSpellerSWLDASimultaneousP300+SSVEPBharne et al. (2015)

Increase the classification speedSpellerSWLDA, CCASimultaneousP300+SSVEPPanicker et al. (2011)

Increase the classification speedTarget selec-
tionBLDA, CCASimultaneousP300+SSVEPEdlinger et al. (2011)

Increase the classification speedObject controlLDASequentialP300+SSVEPYin et al. (2013)

Inappropriate speed and ignoring the 
control state of subject due to system 

synchronization 

Curser move-
mentSVM-FLDASimultaneousP300+SSVEPXu et al. (2013)

Increase the classification accuracyObject controlKernel FDA, 
SVMSequentialP300+SSVEPXu et al. (2013)

Increase the classification accuracyObject controlSVMSequentialP300+SSVEPXu et al. (2013)

Increase the classification accuracy and ITRSpellerLDA, SWLDASimultaneousP300+SSVEPXu et al. (2013)
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ResultApplicationClassifica-
tion

Combina-
tion Type

Combined 
Control 
Signals

Paper

Increase the ITRSpellerSVM, LDASequentialP300+SSVEPXu et al. (2013)

Increase the classification accuracyCurser move-
mentFLDASimultaneousSSVEP+ERDAllison et al. (2010)

Decrease the positive error rateOrthotics 
controlLDASequentialSSVEP+ERDSavić et al. (2011)

Increase the classification accuracy and 
ITR

Curser move-
mentLDASimultaneousSSVEP+ERDBrunner et al. (2011)

Reduce the time spentNeural pros-
thesis control-SequentialSSVEP+ERDPfurtscheller et al. 

(2010) 

Continuous and simultaneous move-
ment in two dimensions

Curser move-
mentLDASimultaneousSSVEP+ERDAllison et al. (2012)

Simultaneous control of direction and 
speed

Wheelchair 
controlLDASimultaneousSSVEP+ERDLi et al. (2013)

Simultaneous set of direction and speed 
with spend the least possible time and 

high classification accuracy

Wheelchair 
controlSVMSimultaneousSSVEP+ERDLi et al. (2014)

Realization of eight control commandWheelchair 
controlRBF-SVMSimultaneousSSVEP+ERDCao et al. (2014)

Achieve optimal performanceObject controlSVMSimultaneousSSVEP+ERDCao et al. (2014)

To determine and fulfill the stop com-
mand

Wheelchair 
control-SequentialP300+ERDRebsamen et al. (2008)

Direction and speed controlWheelchair 
controlLDASimultaneousP300+ERDLong et al. (2012a)

Providing movement in various dimen-
sionsRobot controlFDASequentialP300+ERDFinke et al. (2011)

Realization of more complex tasksObject controlSVM, FLDASimultaneousP300+ERDSu et al. (2011)

Robot controlRobot controlLDASequentialP300+ERDRiechmann et al. (2011)

Increase the classification accuracy and 
ITRSpellerLDASequentialP300+ERDRiechmann et al. (2011)

Increase the classification accuracy and 
ITRSpellerLDASequentialP300+ERDRiechmann et al. (2011)

Affective robot controlRobot control-SequentialEEG+EOGUsakli et al. (2009)

Increase the classification accuracy Prosthesis 
controlSVMSimultaneousEEG+EOGRiccio et al. (2015)

Improve the performance Vigilance 
estimation-SimultaneousEEG+EOGRiccio et al. (2015)

Increase the ITRCurser move-
mentSVMSequentialEEG+Eye 

TrackerKim et al. (2015)

Increase the ITRCurser move-
mentLDASequentialEEG+Eye 

TrackerKim et al. (2015)

Increase the classification accuracy Speller-SimultaneousEEG+EMGLin et al. (2015)

Increase the classification accuracy+ITR 
and the number of target itemsSpeller-SequentialEEG+EMGLeeb et al. (2011)

Improve the performance and ITRSpeller-SequentialEEG+EMGRiccio et al. (2015)

Increase the classification accuracy+the 
number of targets and ITRSpellerCCASimultaneousEEG+EMGRiccio et al. (2015)

Increase the classification accuracyObject controlLDASimultaneousEEG+EMGRiccio et al. (2015)

Improve the object controlObject controlSVMSimultaneousEEG+EMGRiccio et al. (2015)
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containing the target characters. Simultaneous with 
P300, several SSVEP frequencies are applied; hence, 
the characters in the same row or column may not have 
the same frequency (Yin et al., 2013). To increase clas-
sification accuracy aimed at detecting the control state 
(period of time in which the subject is intended to con-
vey information), the sequential combination of P300 
and SSVEP is used (Edlinger, Holzner, & Guger, 2011; 
Panicker, Puthusserypady, & Sun, 2011).

In simultaneous combination of P300 and SSVEP, to 
avoid any disruption caused by unstable frequency of 
P300 on the frequency of flickering SSVEP, the P300 
is used as the target deformation (Wang et al., 2015). 
In this approach, using the stop features of SSVEP 
coupled with changing shape in P300 could also be ef-
fective (Xu et al., 2013).

2.2.2. The combination of ERD and SSVEP

SSVEP and ERD combination is employed in vari-
ous applications such as the control of wheelchair, or-
thotics, and neural prosthesis. In combination of these 
signals, the ability to use the desired control signal at 
any moment leads to the increase in classification ac-
curacy (Allison et al., 2010). This combination could 
also be effective in increasing the number of control 
commands. For example, if the classification of four di-
rections of movement is realized using the right and left 
wrist motor imagery and taking into account the time of 
imagination, it is not possible yet to control the cursor 
in several directions in a moment (Bai, Lin, Huang, Fei, 
& Floeter, 2010). 

SSVEP and ERD combination enable continuous 
movement in two dimensions simultaneously (Allison 
et al., 2012). Moreover, the possibility of simultaneous 
control of direction and speed of the wheelchair is pro-
vided and the move/stop command is made by spend-
ing a short time (Li et al., 2013; Cao, Li, Ji, & Jiang, 
2014; Li et al., 2014). To increase the ITR, the combi-
nation of these two signals is practical and better than 
switching from one state to another, since the fatigue 
resulting from this approach is not much (Brunner, Al-
lison, Altstätter, & Neuper, 2011). 

To increase classification accuracy, their combina-
tion is used to detect resting state in various applica-
tions such as opening/closing orthotics and controlling 
neural prosthetics during grasping. The division of task 
into two steps and the possibility to turn off the LED 
after the completion of the first step reduce the fatigue 
and error rate by reduction of the adverse impact of 
LED flashes on ERD detection (Pfurtscheller, Solis-Es-
calante, Ortner, Linortner, & Muller-Putz, 2010; Savić, 
Kisić, & Popović, 2011).

2.2.3. The combination of P300 and ERD

The most common practical applications of P300 and 
ERD combination are wheelchair and robot control. 
In general, the control of these objects is done in two 
ways. In the first case, several targets are shown against 
the subject and the subject should select one of them. 
The subject automatically moves towards the target 
through a predetermined path. In this case, the indi-
vidual has no control over the path. In the second case, 

ResultApplicationClassifica-
tion

Combina-
tion Type

Combined 
Control 
Signals

Paper

Decrease the classification accuracy in 
simultaneous combination

Curser move-
ment-Sequential/

SimultaneousEEG+SSSEPAhn et al. (2013)

Providing multi-class BCI systemCurser move-
ment-SimultaneousEEG+SSSEPYao et al. (2014a)

Increase the classification accuracyObject controlLDASimultaneousEEG+SSSEPYao et al. (2014b)

Achieve optimal subjects’ performanceObject controlLDASimultaneousEEG+SSSEPYao et al. (2014a)

Realization a large number of commandsWheelchair 
control-SimultaneousEEG+NIRSKhan et al. (2014a)

Increase the ITR-LDASimultaneousEEG+NIRSYao et al. (2014b)

Provide open access dataset-LDASimultaneousEEG+NIRSYao et al. (2014a)

Increase the classification accuracy and 
improve sensitivity and specificity

Stress assess-
mentSVMSimultaneousEEG+NIRSAl-Shargie et al. (2016) 

SSVEP: Steady-State Visual Evoked Potential; ERD: Event-Related Desynchronization; EEG: Electroencephalogram; EOG:  
Electrooculogram; EMG: Electromyogram; SSSEP: Steady-State Somatosensory Evoked Potentials; NIRS: Near-Infrared Spec-
troscopy; and ITR: Information Transfer Rate
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the subject moves himself closer to the target with the 
voluntary movements in different directions. In order to 
automatically move the wheelchair, sequential combi-
nation of P300 and ERD is used. 

In the first stage, the target is selected using P300 and 
the subject moves himself closer to it from a predeter-
mined path. In the second stage, the ERD is used for 
stop command (Rebsamen et al., 2008; Rebsamen et al., 
2010; Riechmann, Hachmeister, Ritter, & Finke, 2011). 
On the other hand, when the voluntary control of direc-
tion and the speed of movement are considered, both 
simultaneous and sequential combinations are used.

Typically, in applications that employ the simultaneous 
combination of these two control signals, ERD is used to 
move in different directions and P300 is applied to control 
the speed or stop command (Long et al., 2012a). In se-
quential combination, ERD is used for routing and P300 is 
applied to achieve the desired object. Utilization of ERD 
for routing limits the number of commands and the P300 
provides the control panel for the subject that allows him 
the possibility of further tasks (Finke, Knoblauch, Koes-
ling, & Ritter, 2011; Su et al., 2011).

2.2.4. The combination of EEG and EOG

EEG-based systems are a superior technology to in-
crease the communication of patients with disability 
and or paralysis that cannot move and speak. However, 
if there is little ability to move eyes in patients, this abil-
ity can also be used in conjunction with EEG signals 
in HBCI systems. Eye movement changes the orienta-
tion of the corneal-retinal potential and the electrodes 
placed around the eyes can record the effects named 
EOG. The combination of EOG signal and other con-
trol signals is used in various applications such as con-
trol of virtual keyboard, wheelchair, mobile robot, etc.

The input of eye movement does not require much train-
ing and acts very fast. The amplitude of EOG signal is 
about several microvolts, hence, it could be easily clas-
sified with high accuracy. This method is economically 
affordable since the number of electrodes is few. As an 
example of this combination in robot control, moving to 
the right and left direction is obtained using only two EOG 
electrodes. Direct movement and complete stop are also 
done by motor imagery and eye closing, respectively (Us-
akli, Gurkan, Aloise, Vecchiato, & Babiloni. 2009; Pun-
sawad, Wongsawat, & Parnichkun, 2010).

2.2.5. The combination of EEG and Eye-tracker

Eye tracking system is a wearable human-computer inter-
face that provides the possibility to communicate through eye 
movements and blinking. The combination of this interface 
and EEG signals could be used in HBCI systems. The main 
use of this combination is curser movement on the screen. 
First, the subject guides the curser to the target as quickly as 
possible and then selects it. Eye motion indicates the cursor 
movement on the screen and the target is selected by EEG 
signal. Although the ITR in this combination is less than us-
ing mouse, this rate is increased compared with that of BCI 
(Kim, Kim & Jo, 2015).

2.2.6. The combination of EEG and EMG

Some patients may have little ability to move muscles 
in some organs. In many applications, this residual 
motion is not useful to control objects due to muscle 
weakness, exhaustion or disruption of natural tension. 
However, this ability can be effectively employed as a 
second signal in HBCI systems. For each patient, the 
suitable muscle is selected for electrode placement 
based on its ability to contract (Lalitharatne, Teramoto, 
Hayashi, & Kiguchi, 2013). The combination of EMG 
and motor imagery, P300 and SSVEP, is employed in 
various applications. SSVEP-based speller despite high 
ITR, high signal to noise ratio, and no need for training, 
only has appropriate response in a certain frequency 
range; it limits the number of target items. 

To increase ITR and the number of characters in 
spellers, sequential combination of SSVEP and EMG 
is used, in such a way that all characters are divided 
into several groups and the ones that are in the same 
group flicker with different frequencies. The number of 
muscle activities determines the group number. Hence, 
after determining the desired group, the target item is 
selected by SSVEP (Lin, Chen, Huang, Ding, & Gao, 
2015). To increase classification accuracy, the simul-
taneous combination of motor imagery and EMG has 
relatively better results in comparison with that of BCI 
system (Leeb, Sagha, Chavarriaga, & del R Millán, 
2011). In this regard, P300 and EMG combination can 
be used to correct the error in spellers. In other words, 
contrary to BCI systems, which use backspace to delete 
the wrong letter, it is realized with the EMG in hybrid 
mode (Riccio et al., 2015).

2.2.7. The combination of EEG and SSSEP

Many people with stroke that their muscles are dam-
aged as well as people who lost the ability of eye gaze 
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may have the ability to feel stimulation, which can be 
used in HBCI systems. For example, a combination of 
steady state somatosensory evoked potential retrieved 
from selective sensation and motor imagery is used in 
cursor control. Motor imagery is the activation of effer-
ent motor nerves and selective sensation is receiving 
afferent neuron inputs related to stimulation perception. 
ERD and SSSEP are achieved by motor imagery and 

tactile stimulation, respectively. In the simultaneous 
combination of these signals, increasing the classifica-
tion accuracy could not be achieved due to ERD deg-
radation caused by tactile signals (Ahn, Ahn, Cho, & 
Jun, 2013). In fact, ERD reduces the SSSEP amplitude 
and selective sensation increases it (Yao, Meng, Zhang, 
Sheng, & Zhu, 2014a).

Table 2. A comparison of the results of various researches in the field of hybrid BCI

Information 
Transfer Rate

Classification 
Accuracy

The Number 
of Channel

Combination
 Type

Combined
Control SignalPaper

19 88.159SequentialP300+SSVEPPanicker et al. (2011)

34 97.5±6.232SequentialP300+SSVEPXu et al. (2013)

56.44±8.1993.85±49.712SimultaneousP300+SSVEPYin et al. (2013)

48±495±512SimultaneousP300+SSVEPYin et al. (2014)

22±52.690.63±10.168SimultaneousP300+SSVEPWang et al. (2015)

-93±13SequentialP300+SSVEPWang et al. (2015)

-94±612SequentialP300+SSVEPWang et al. (2015)

32±5.593±714SimultaneousP300+SSVEPWang et al. (2015)

-81±8.96SimultaneousSSVEP+ERDAllison et al. (2010)

4.7±2.495.6±6.78SimultaneousSSVEP+ERDBrunner et al. (2011)

-85±62SequentialSSVEP+ERDPfurtscheller et al. (2010)

-986SequentialSSVEP+ERDSavić et al. (2011)

-6035SimultaneousSSVEP+ERDAllison et al. (2012)

-90±215SimultaneousSSVEP+ERDCao et al. (2014)
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Figure 5. The comparison of different combinations of HBCI systems based on classification accuracy and information transfer rates

The range of classification accuracy and ITR were determined based on the conducted researches.
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Information 
Transfer Rate

Classification 
Accuracy

The Number 
of Channel

Combination
 Type

Combined
Control SignalPaper

11±7713SequentialSSVEP+ERDWang et al. (2015)

89±5.515SimultaneousSSVEP+ERDWang et al. (2015)

1±1791±114SimultaneousSSVEP+ERDWang et al. (2015)

1±22.59519SequentialP300+ERDBhattacharyya et al. (2014)

-93.9930SequentialP300+ERDLong+et al. (2012b)

-12.7±8514SequentialP300+ERDRoula et al. (2012)

-79.5±2.516SimultaneousP300+ERDRiechmann et al. (2011)

11±4188±418SequentialP300+ERDRiechmann et al. (2011)

10±4387±418SequentialP300+ERDRiechmann et al. (2011)

-96±25SimultaneousEEG+EOGPunsawad et al. (2010)

86±597.885SequentialEEG+EOGRamli et al. (2015)

-11.5±8710SequentialEEG+EOGMa et al. (2015)

568010SequentialEEG+EOGKoo et al. (2014a)

-1.7±9115SimultaneousEEG+EOGRiechmann+et al. (2011)

-5±602SimultaneousEEG+Eye TrackerMeena et al. (2015)

-95.6±2.614SequentialEEG+Eye TrackerKim et al. (2015)

120±7.584±9.514SequentialEEG+Eye TrackerKim et al. (2015)

->8032SimultaneousEEG+Eye TrackerDong et al. (2015)

85.5±216SequentialEEG+Eye TrackerRiechmann et al. (2011)

40.5±195.3±1.5-SequentialEEG+Eye TrackerRiechmann et al. (2011)

60.4794SequentialEEG+Eye TrackerRiechmann et al. (2011)

83.7±2480.8±15.611SequentialEEG+EMGLin et al. (2015)

-9120SimultaneousEEG+EMGLeeb et al. (2011)

12 1009SequentialEEG+EMGRiccio et al. (2015)

-8816SimultaneousEEG+EMGLeeb et al. (2010)

-84±7.716SimultaneousEEG+EMGKiguchi et al. (2012)

91±1686±911SimultaneousEEG+EMGRiechmann et al. (2011)

-64±5.564Sequential/Si-
multaneousSSSEP+EEGAhn et al. (2013)

1.2±1.147764SimultaneousSSSEP+EEGAhn et al. (2013)

-83±8.564SimultaneousSSSEP+EEGYao et al. (2014a)

-44.5±732SimultaneousSSSEP+EEGRiechmann et al. (2011)

-55.5±8.532SimultaneousSSSEP+EEGRiechmann et al. (2011)
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2.2.8. The combination of EEG and NIRS

Non-invasive brain imaging technique that uses light 
with a wavelength range of 600 to 1000 nm is called 
NIRS. It is used to measure the hemodynamic response 
due to oxygenated hemoglobin, hemoglobin without 
oxygen, water, etc. EEG signal has good temporal 
resolution but poor spatial resolution, while NIRS has 
moderate temporal and spatial resolution and is also re-
sistant to noise (Coyle, Ward, Markham, & McDarby, 
2004; Herff et al. 2015). In HBCI systems, EEG, and 
NIRS combination is used to increase the number of 
commands without reduction in classification accuracy. 
For example, NIRS is used to measure brain activity 
caused by mental acts (mental counting or performing 
subtraction) and EEG signal is applied to detect move-
ment (Khan, Hong, Naseer, Bhutta, & Yoon, 2014a).

3. Discussion

The current study assessed different HBCI systems 
that were the result of the combination of a BCI control 
signal and other BCI control signals or HMI control 
biosignals from the perspective of application, capabil-
ities, and limitations. HBCI systems are used in many 
applications such as object control, movement control, 
spellers, etc. By the sequential combination of these 
systems, a complex task can be divided into several 
stages and only one BCI system is used at each stage. 
This method of combination assists to reduce the errors 
by better distinguishing the rest state from the attention 
state. On the other hand, the main goal of simultaneous 
combination of these systems is to increase the ITR. 

Generally, HBCI systems have higher ITR and greater 
classification accuracy compared to those of the con-
ventional BCI systems, but they are usually more com-
plex. This complexity can affect the ease of use of the 
system and its acceptance by the user.

From this perspective, the design and implementation 
of these systems including the number of channels play 
an important role in the performance of system. Table 
2 summarizes results of different studies with an em-
phasis on the number of channels, ITR, and classifica-
tion accuracy. The experimental conditions and signal 
recording considerations are different in these studies. 
Accuracy and ITR measures are sensitive to the experi-
ment protocol, which makes it difficult to compare the 
results. Hence, to manage this issue, these measures are 
presented in the graphical form of Figure 5. In this Fig-
ure, various HBCI combinations were compared with 
two quantitative criteria of classification accuracy and 
ITR. In this Figure, an ellipse is drawn for the ranges of 
ITR and classification accuracy of each method.

The center of ellipse and its diameters are set based on 
the mean and standard deviation of average values listed 
in Table 2. Classification accuracy and ITR are two impor-
tant parameters to evaluate a BCI system. It is a tradeoff 
between these two parameters; as one increases, the other 
one decreases and vice versa. For a particular application, 
the increase in accuracy may be considered an advantage 
or an increase in ITR is desirable. Therefore, concerning 
the ultimate goal and depending on the application, the 
appropriate combination type should be determined. By 
having the correct location of the accuracy and the ITR 

Information 
Transfer Rate

Classification 
Accuracy

The Number 
of Channel

Combination
 Type

Combined
Control SignalPaper

->8020SimultaneousEEG+NIRSKhan et al. (2014a)

-86±537SimultaneousEEG+NIRSFazli et al. (2012)

-88±108SimultaneousEEG+NIRSKoo et al. (2015b)

-803SequentialEEG+NIRSKhan et al. (2014b)

-5937SimultaneousEEG+NIRSLee et al. (2014)

-832SimultaneousEEG+NIRSMa et al. (2012)

-58±14.53SimultaneousEEG+NIRSHerff et al. (2015)

13.9±10.5-2SimultaneousEEG+NIRSTomita et al. (2014)

-94±3.523SimultaneousEEG+NIRSRiechmann et al. (2011)

-95±431SimultaneousEEG+NIRSRiechmann et al. (2011)
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corresponding to each combination, it is easy to determine 
the optimal combination.

The current study results showed that in most cases, 
the combination of a BCI control signal and HMI control 
biosignal had relatively higher ITR in comparison with 
those of the combination of the two BCI control signals. 
According to the Figure, the highest and lowest ITRs were 
achieved using EEG and Eye Tracker and SSVEP and 
ERD, respectively. The combination of EEG signal and 
NIRS also had the lowest classification accuracy in com-
parison with those of the others, while the accuracy val-
ues of other hybrid systems did not differ much from each 
other and they were located within the range of 70% to 
100%. Generally, in using HBCI systems, the combination 
technique can be determined based on the type of applica-
tion, the main goal, as well as the capabilities of patients.
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