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ABSTRACT 

In this paper, nonlinear dynamical analysis based on recurrence quantification analysis (RQA) has 

been employed for characterizing the nonlinear EEG dynamics. RQA can provide some useful 

quantitative information on the regular, chaotic or stochastic property of the underlying dynamics. 

We use the RQA-based measures as the quantitative features of the nonlinear EEG dynamics. 

Mutual information (MI) is used to find the most relevant feature subset from RQA-based features. 

The selected features are fed into an artificial neural network for grouping of EEG recordings to 

detect ictal, interictal, and healthy states. The performance of the proposed procedure is evaluated 

using a database for different classification cases. The combination of five selected features based 

on MI achieved 100% accuracy, which demonstrates the superiority of the proposed method. 

Key Words: Epilepsy, Mutual Information, Nonlinear Analysis, Recurrence Quantification 

Analysis, Seizure Detection. 

 

1. Introduction 

pilepsy is a chronic neurological disorder that can cause recurrent seizures and 

characterized by sudden, excessive, disorder, hypersynchronous, and localized 

electrical discharges of a group of neurons in the brain that temporarily can change 

brain functions, i.e., transient impairments of sensation, altered state of consciousness or loss of 

awareness, focal involuntary movements or convulsions (Osorio, Zaveri, Frei, & Arthurs, 2011). 

Sudden and recurrent seizures can have significant effect on the life of a patient. It is clear that 

reliable real-time detecting the occurrence of seizures could significantly improve the therapeutic 

potentials such as “closed-loop” therapies. In closed-loop therapies, electrical stimulation, drug 

infusion, cooling, or biofeedback may be delivered in response to a seizure detection (Ramgopal 

E 



 

et al., 2014). Patients with epilepsy are usually treated with antiepileptic drugs (AEDs) to control 

their seizures (Wlodarczyk, Palacios, George, & Finnell, 2012); accurate real-time detection of 

seizures is critical to reduce the side effects by on demand delivering of AEDs during the preictal 

case with short-acting drugs. 

A conventional technique for diagnosis and analysis of epilepsy is the long-term EEG 

recording for several days and then visual inspection of EEG recordings by human specialists. To 

reduce the burden of time-consuming inspection, a robust real-time seizure-detection system could 

facilitate long-term monitoring and localization of the epileptogenic zone (i.e., the brain zone that 

can generate seizures), which is helpful in presurgical evaluations. Accordingly, there is currently 

a strong demand for developing automatic seizure detection systems. A seizure detection system 

should be able to identify the occurrence of seizures from the ongoing EEG or intracranial EEG 

and this can be achieved by classification of the brain signals. Different approaches have been 

proposed to deal with the automatic seizure detection. The key components of seizure detection 

are feature extraction from brain electrical activity and classification of the extracted features. So 

far, different approaches based on time-domain analysis, frequency-domain analysis, and 

information theory have been used for feature extraction from brain electrical activity (Thomas et 

al., 2013; Yang et al., 2013; Page et al., 2015; Peker, Sen, & Delen, 2016). 

Empirical mode decomposition (EMD) have been used for extracting features from the 

intrinsic mode functions (IMFs) of EEG signals for seizure detection (Pachori, 2008; Oweis & 

Abdulhay, 2011; Pachori & Bajaj, 2011; Bajaj & Pachori, 2012; Alam & Bhuiyan, 2013; Riaz et 

al., 2016). The mean frequency measure of IMFs has been used as a feature to recognize the 

difference between seizure (ictal) and seizure-free (interictal) EEG signals (Pachori, 2008). In 

(Oweis & Abdulhay, 2011), the weighted frequency of IMFs has been used as the feature set for 



 

discriminating healthy EEG from epileptic seizure EEG signals. The area measurement of the 

analytic IMFs has been also used as a feature set for discriminating healthy from the epileptic 

seizure (Pachori & Bajaj, 2011). Bajaj & Pachori (2012) used the amplitude and frequency 

modulation bandwidths of the analytic IMFs as the feature set for classifying seizure and 

nonseizure EEG signals. The higher order moments, including variance, kurtosis, and skewness, 

extracted from the IMFs of the EEG signals were used as the features for classification of various 

cases including healthy, interictal, and ictal; healthy and seizure; nonseizure and seizure; and 

interictal and ictal (Alam & Bhuiyan, 2013). Recently, spectral centroid, coefficient of variation, 

and the spectral skew of the IMFs have been used for feature extraction to detect epileptic seizure 

(Riaz et al., 2016). 

A series of studies focused on nonlinear dynamical analysis of EEG signals to extract 

features for detection of epilepsy (Srinivasan, Eswaran, & Sriraam, 2007; Chen et al., 2011; 

Niknazar et al., 2013; Yaylali, Koçak, & Jayakar, 1996; Cerf, El Amri, El Ouasdad, & Hirsch, 

1999; Adeli, Dastidar, & Dadmehr, 2007; Dastidar, Adeli, & Dadmehr, 2007; Iasemidis et al., 

2003; Drongelen et al., 2003; Easwaramoorthy & Uthayakumar, 2011; Zhou, Liu, Yuan, & Li, 

2013; Zabihi et al., 2016; Thomasson, Hoeppner, Webber, & Zbilut, 2001; Li, Ouyang, Yao, & 

Guan, 2004; Ouyang, Li, Dang, & Richards, 2008; Niknazar et al., 2013). These features include 

approximate entropy (ApEn) (Srinivasan, Eswaran, & Sriraam, 2007; Chen et al., 2011; Niknazar 

et al., 2013), correlation dimension (Yaylali, Koçak, & Jayakar, 1996; Cerf, El Amri, El Ouasdad, 

& Hirsch, 1999; Adeli, Dastidar, & Dadmehr, 2007; Dastidar, Adeli, & Dadmehr, 2007), 

Lyapunov exponent (Niknazar et al., 2013; Adeli, Dastidar, & Dadmehr, 2007; Dastidar, Adeli, & 

Dadmehr, 2007; Iasemidis et al., 2003), Kolmogorov entropy (Drongelen et al., 2003), fractal 

dimension (Niknazar et al., 2013; Easwaramoorthy & Uthayakumar, 2011), lacunarity (Zhou, Liu, 



 

Yuan, & Li, 2013), and features extracted from Poincaré section (Zabihi et al., 2016) as well as 

recurrence quantification analysis (RQA) (Niknazar et al., 2013; Thomasson, Hoeppner, Webber, 

& Zbilut, 2001; Li, Ouyang, Yao, & Guan, 2004; Ouyang, Li, Dang, & Richards, 2008; Niknazar 

et al., 2013). 

In spite of all these numerous approaches for feature extraction, a major challenge to classify 

the electrical brain activity to detect epilepsy is the feature selection from a large number of 

available EEG features. Searching important and relevant features is essential to improve the 

accuracy, efficiency, and generalization of a classification process. There have been a few studies 

on the feature selection for seizure detection (Alessandro et al., 2003; Temko et al., 2011; Wang 

& Lyu, 2015; Zhang & Parhi, 2016). Genetic algorithm (Alessandro et al., 2003), recursive feature 

elimination (Temko et al., 2011; Wang & Lyu, 2015), and Fisher’s linear discriminant analysis 

combined with the branch and bound algorithm (Zhang & Parhi, 2016) were employed to select 

EEG features for epileptic seizure detection. 

In this paper, a feature selection algorithm, which is based on mutual information (MI) 

estimates (Kwak & Choi, 2002; Peng, Long, & Ding, 2005) is used for seizure detection. MI is a 

nonparametric measure of the dependence between random variables and is always non-negative. 

In terms of MI, the aim of the feature selection is to find features from a large feature set which 

jointly has the largest dependency on the target class. The original features were extracted from 

RQA of the EEG signals. The RQA of the EEG signals is used to characterize the nonlinear EEG 

dynamics and extract appropriate features for automatic seizure detection. We extend the previous 

RQA-based features and introduce different RQA measures, which are important for measuring 

the complexity. 

 



 

2. Dataset 

The dataset provided by Dr. R. Andrzejak (http://epileptologie-

bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3) is used in this study. The 

dataset consists of 500 single-channel EEG segments, each one having a duration of 23.6 s, and is 

categorized into five subsets (marked as sets A-E) while each subset contains 100 EEG segments. 

The subsets A and B have been recorded from five healthy candidates with their eyes open and 

closed, respectively, using the standard 10–20 electrode arrangement. The subsets C and D contain 

EEG signals recorded during interictal intervals from the epileptogenic region and the 

hippocampal formation of the opposite hemisphere, respectively. The subset E includes EEG 

segments corresponding to seizure attacks, recorded using all the electrodes. The subsets A and B 

have been recorded extracranially, whereas subsets C, D, and E have been recorded intracranially. 

The EEG signals were recorded in a digital format at the sampling rate of 173.61 Hz and were 

band-pass filtered between 0.53 and 60 Hz. Fig. 1 demonstrates the typical EEG signals from each 

subset. 

Fig. 1 

 

3. Methods 

3.1. Feature Extraction Procedure 

The original features were extracted from the RQA of the EEG signals. The first step in 

RQA is the reconstruction of the phase space trajectory and construction of the recurrence plot 

(RP). RP is a technique, which can visualize the recurrence of the system states of a dynamical 

system in the phase space. 

 

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3
http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3


 

3.1.1. Phase Space Reconstruction 

An important step in the analysis of any dynamical system is the reconstruction of its phase 

space. The phase space of a dynamical system is a space, which shows all states of a system, 

whereas each state of the system corresponds to one unique point in the phase space. Phase space 

is a geometrical representation of system dynamics. A frequently used method for the phase space 

reconstruction is the Taken’s time delay method (Marwan, Romano, Thiel, & Kurths, 2007). 

According to the Taken’s theorem, the dynamics of time series (𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝑁𝑁) can be embedded 

in a m-dimensional phase space by the vector as follows 

𝑥𝑥𝑡𝑡 = �𝑢𝑢𝑡𝑡,𝑢𝑢𝑡𝑡+𝜏𝜏, … ,𝑢𝑢𝑡𝑡+(𝑚𝑚−1)𝜏𝜏�                                                   (1) 

where τ and m are the time delay and the embedding dimension, respectively. In order to fully 

capture the dynamics, an appropriate time delay and the embedding dimension should be chosen. 

A proper time delay is  the first local minimum of the MI function (Fraser & Swinney, 1986). Cao 

proposed a method to define the minimum embedding dimension from a scalar time series (Cao, 

1997). The method is started with a low value of the embedding dimension m and then increasing 

it until the number of false neighbors' reduces to zero. In this paper, we used MI and Cao’ methods 

to approximate the time delay and embedding dimension, respectively. 

 

3.1.2. Recurrence Plot (RP) 

Recurrence is a substantial nature of dynamical systems (Marwan, Romano, Thiel, & 

Kurths, 2007). Eckmann et al. introduced a method to visualize the recurrences of dynamical 

systems called RP (Marwan, Romano, Thiel, & Kurths, 2007). To construct the RP, a symmetrical 

N ×N array called recurrence matrix 𝑅𝑅  is computed as follows: 

𝑅𝑅𝑖𝑖,𝑗𝑗(𝜀𝜀) = 𝛩𝛩�𝜀𝜀 − ��⃗�𝑥𝑖𝑖 − �⃗�𝑥𝑗𝑗��                                              (2) 



 

where N is the number of intended states �⃗�𝑥, 𝛩𝛩(𝑥𝑥) is the Heaviside function (i.e., 𝛩𝛩(𝑥𝑥) = 0 if 𝑥𝑥 <

0 and 𝛩𝛩(𝑥𝑥) = 1 otherwise), 𝜀𝜀 is the threshold distance, and ‖∙‖ is a norm, Thus recurrence matrix 

is a matrix consisting of ones and zeros. To calculate recurrence matrix, a suitable norm has to be 

selected. In this paper, we used Euclidean norm for calculating the distance between two states. 

RP of each dynamical system has its own topology. For example, RP related to periodic systems 

has uncut and long diagonal lines. The vertical distance between these diagonal lines indicates the 

period of the fluctuations. The RP of chaotic system also has diagonal lines, which are shorter than 

periodic systems with certain vertical distances. But, vertical distances in chaotic systems are not 

as regular as in the periodic systems. The RP of the uncorrelated stochastic signal consists of many 

single black points. 

 

3.1.3. Recurrence Quantification Analysis (RQA) 

To quantify the structures in RPs, several measures of complexity have been proposed. 

These measures are known as RQA (Marwan, Romano, Thiel, & Kurths, 2007) and are based on 

the recurrence point density, the diagonal and vertical line structures, recurrence time, and 

recurrence network. 

3.1.3.1. Recurrence Point Density Measure 

𝑅𝑅𝑅𝑅 = 1
𝑁𝑁2
∑ 𝑅𝑅𝑖𝑖,𝑗𝑗(𝜀𝜀) 𝑁𝑁
𝑖𝑖,𝑗𝑗=1                                                   (3) 

The measure 𝑅𝑅𝑅𝑅 describes the probability that a state recurs to its ε-neighborhood in phase 

space. 

3.1.3.2. Diagonal Line Measures 

These measures are calculated from the histogram 𝑃𝑃(𝜀𝜀, 𝑙𝑙) of diagonal lines with a length 

of l. The RP of stochastic systems has none or short diagonal lines structure and more single points, 



 

while deterministic systems are characterized by longer diagonal lines and less single isolated 

recurrence points. 

Determinism (DET): The determinism (or predictability) of a system can be measured by 

the ratio of recurrence points that form diagonal structures (of at least length 𝑙𝑙𝑚𝑚𝑖𝑖𝑚𝑚) to all recurrence 

points: 

𝐷𝐷𝐷𝐷𝐷𝐷 =
∑ 𝑙𝑙∙𝑃𝑃(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
∑ 𝑙𝑙∙𝑃𝑃(𝑙𝑙)𝑁𝑁
𝑙𝑙=1

                                                      (4) 

where 𝑙𝑙𝑚𝑚𝑖𝑖𝑚𝑚 is the least length and 𝑃𝑃(𝑙𝑙) is the frequency distribution of the length l of the diagonal 

structures in the RP. In this paper, we select 𝑙𝑙𝑚𝑚𝑖𝑖𝑚𝑚 = 2. 

Mean diagonal line length (𝐿𝐿): A diagonal line of length l shows that a segment of the 

trajectory is partly close during l time step to another segment of the trajectory at a different time. 

These diagonal lines indicate the divergence of the trajectory segments. The average time that two 

segments of the trajectory are close to each other can be measured by the average diagonal line 

length, and can be considered as the mean prediction time (Marwan, Romano, Thiel, & Kurths, 

2007): 

𝐿𝐿 =  
∑ 𝑙𝑙∙𝑃𝑃(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
∑ 𝑃𝑃(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

                                                         (5) 

The main diagonal is not considered for calculation 𝐿𝐿. 

Maximal diagonal line length (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚): 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚is the length of the longest diagonal line in the 

RP that is parallel to the main diagonal (Marwan, Romano, Thiel, & Kurths, 2007). The main 

diagonal line is not considered for calculation of 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚. The exponential divergence of the phase 

space trajectory is measured by 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚. The shorter diagonal lines indicate faster trajectory 

divergence.  



 

Entropy of the diagonal line lengths (𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅): The entropy of the length of diagonal lines 

is calculated as follows: 

𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅 = −∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁
𝑙𝑙=𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

                                          (6) 

where 𝑝𝑝(𝑙𝑙) is the probability that a diagonal line has exactly length l. Complexity in the RP can be 

measured by 𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅. The small value of 𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅 indicates strong regularity and less complexity and 

the large value indicates significant fluctuations. 

3.1.3.3. Vertical Line Measures 

The chaos–chaos, order-chaos, and chaos-order transitions can be found by vertical line 

measures (Marwan et al., 2002). Hence, these measures are appropriate for investigating the 

intermittency and short and non-stationary data series.  

Laminarity (𝐿𝐿𝐿𝐿𝐿𝐿): The ratio of the recurrence points forming the vertical structures to the 

entire set of recurrence points is defined as the LAM as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿 =
∑ 𝑣𝑣 𝑃𝑃(𝑣𝑣)𝑁𝑁
𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
∑ 𝑣𝑣 𝑃𝑃(𝑣𝑣)𝑁𝑁
𝑣𝑣=1

                                                   (7) 

where the 𝑃𝑃(𝑣𝑣) is the histogram of the vertical lines with length 𝑣𝑣  and 𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚 is a minimal length. 

Trapping time (𝐷𝐷𝐷𝐷): 𝐷𝐷𝐷𝐷 is the average length of vertical structures as follows  

𝐷𝐷𝐷𝐷 =
∑ 𝑣𝑣𝑃𝑃(𝑣𝑣)𝑁𝑁
𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
∑ 𝑃𝑃(𝑣𝑣)𝑁𝑁
𝑣𝑣=𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

                                                       (8) 

and describes the mean time that the system remains in a state. 

 

Maximal vertical line length (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚):  This measure is the length of the longest vertical line 

in the RP: 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥({𝑣𝑣𝑖𝑖; 𝑖𝑖 = 1, … ,𝐸𝐸𝑣𝑣})                                            (9) 

where 𝐸𝐸𝑣𝑣 is the total number of vertical lines in RP. 



 

3.1.3.4. Recurrence Time based Measures 

Three RQA measures based on recurrence time statistics have been proposed for detecting 

the transitional signals in noisy and nonstationary environments (Gao et al., 2003). These measures 

are called the first type (T1) and the second type (T2) of recurrence time and recurrence period 

density entropy (𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷). 

First type (𝐷𝐷1)  and second type (𝐷𝐷2)  of recurrence time: To define the 2nd type of 

recurrence time, consider a scalar time series {𝑢𝑢(𝑖𝑖), 𝑖𝑖 = 1,2, … } and corresponding reconstructed 

trajectory in m-dimensional phase space as 𝑥𝑥𝑡𝑡 = (𝑢𝑢𝑡𝑡,𝑢𝑢𝑡𝑡+𝜏𝜏, … ,𝑢𝑢𝑡𝑡+(𝑚𝑚−1)𝜏𝜏). An arbitrary reference 

point (𝑥𝑥0) on the reconstructed trajectory is selected, then a neighborhood of radius r for reference 

point 𝐵𝐵𝑟𝑟(𝑥𝑥0) = {𝑥𝑥: ‖𝑥𝑥 − 𝑥𝑥0‖ ≤ 𝑟𝑟} is defined. The set of points consisting of the first trajectory 

point getting inside the neighborhood from outside are defined as recurrence points of the 2nd type 

(Fig. 2).  The trajectories that remain inside the neighborhood for a while, produce a sequence of 

points that are called the sojourn points (white circle in Fig. 2). The set of the recurrence points of 

the second type as well as the sojourn points constitute the recurrence points of the first type. If 

the recurrence points are defined as 𝑆𝑆 = {𝑥𝑥𝑡𝑡1, 𝑥𝑥𝑡𝑡2, … , 𝑥𝑥𝑡𝑡𝑖𝑖 , … }, then the corresponding recurrence 

time 𝐷𝐷 is {𝐷𝐷(𝑖𝑖) = 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 1,2, … }.  

Fig. 2 

Recurrence period density entropy (RPDE): RPDE is a measure that can describe the 

complexity of a signal and determine the  periodicity of a signal (Mukherjee et al., 2015). A system 

with periodic behavior has a RPDE with a value close to 0, whereas a system with chaotic behavior 

has a 𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷 close to 1 (Nair & Kiasaleh, 2014). The 𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷 can be computed as follows:  

𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷 = −(𝑙𝑙𝑙𝑙𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)−1 ∑ 𝑃𝑃(𝑡𝑡)𝑙𝑙𝑙𝑙𝑃𝑃(𝑡𝑡)𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡=1                                       (10) 



 

where 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑃𝑃(𝑡𝑡) are the largest recurrence value and the recurrence period density function, 

respectively. 

3.1.3.5. Recurrence Network Analysis (RNA) based Measure 

RNA measure is the so-called network transitivity (𝐷𝐷𝑟𝑟𝑚𝑚𝑙𝑙𝑇𝑇) and is based on the adjacency 

matrix A elements (Webber & Marwan, 2015), defined as: 

𝐷𝐷𝑟𝑟𝑚𝑚𝑙𝑙𝑇𝑇 =
∑ 𝐴𝐴𝑚𝑚,𝑗𝑗𝐴𝐴𝑗𝑗,𝑘𝑘𝐴𝐴𝑘𝑘,𝑚𝑚
𝑁𝑁
𝑚𝑚,𝑗𝑗,k=1

∑ 𝐴𝐴𝑚𝑚,𝑗𝑗𝐴𝐴𝑘𝑘,𝑚𝑚
𝑁𝑁
𝑚𝑚,𝑗𝑗,𝑘𝑘=1

                                                   (11) 

where 𝐿𝐿 = 𝑅𝑅 − 𝐼𝐼. Trans reflects network complexity and distinguishes between regular and 

irregular dynamics. 

 

3.2. Feature Selection Based on Mutual Information 

The relevance between two variables can be measured by MI. A formalism for quantifying 

MI is Shannon's information theory. Assume X is a random variable that represents continuous-

valued random feature vector, and C is a discrete-valued random variable that represents the class 

labels, the MI between two variables X and C are calculated as follows: 

𝐼𝐼(𝑋𝑋;𝐶𝐶) = ∑ ∫ 𝑝𝑝(𝑐𝑐, 𝑥𝑥)𝑚𝑚𝑐𝑐∈𝐶𝐶 log 𝑝𝑝(𝑐𝑐,𝑚𝑚)
𝑝𝑝(𝑐𝑐)𝑝𝑝(𝑚𝑚)𝑑𝑑𝑥𝑥                                 (12) 

where 𝑝𝑝(𝑐𝑐, 𝑥𝑥) is the joint probability density function of x and c, 𝑝𝑝(𝑥𝑥) and 𝑝𝑝(𝑐𝑐) are the marginal 

probability density functions of x and c, respectively. A large value of the MI between two random 

variables indicates that two variables are closely related. If two random variables are strictly 

independent, the MI is zero. In terms of MI, the optimal feature selection requires selecting a 

feature set f with m features, which jointly have the largest dependency on the target class C (i.e., 

maximal dependency). That is, we seek: 

max𝐷𝐷(𝑓𝑓, 𝑐𝑐) ,     𝐷𝐷 = 𝐼𝐼(𝑓𝑓;𝐶𝐶)                                              (13) 



 

𝐼𝐼(𝑓𝑓,𝐶𝐶) = ��𝐾𝐾�𝑝𝑝(𝑓𝑓1𝐾𝐾𝑓𝑓𝑚𝑚)
𝑐𝑐∈𝐶𝐶

log
𝑝𝑝(𝑓𝑓1Λ𝑓𝑓𝑚𝑚, 𝑐𝑐)
𝑝𝑝(𝑓𝑓1Λ𝑓𝑓𝑚𝑚)𝑝𝑝(𝑐𝑐)𝑑𝑑𝑓𝑓1Λ𝑑𝑑𝑓𝑓𝑚𝑚 

However, it requires an accurate estimation of the underlying probability density functions 

(pdfs) of the data and the integration on these pdfs. Moreover, due to the tremendous computational 

requirements of the method, the practical applicability of the above solution to the problems 

requiring a large number of features is limited. To overcome this problem, a heuristic method 

proposed in (Peng, Long, & Ding, 2005), which is based on minimal-redundancy-maximal-

relevance (mRMR) framework. It was proven that mRMR criterion is equivalent to maximal 

dependency (13) if one feature is added at one time (Peng, Long, & Ding, 2005). This criterion is 

given by: 

𝐽𝐽 = �𝐼𝐼(𝑓𝑓𝑖𝑖; 𝑐𝑐) − 𝛽𝛽∑ 𝐼𝐼(𝑓𝑓𝑖𝑖; 𝑓𝑓𝑠𝑠)𝑓𝑓𝑠𝑠∈𝑆𝑆 �                                          (14) 

According to this criterion, Term 𝐼𝐼(𝑓𝑓𝑖𝑖; 𝑐𝑐) indicate dependency between a new feature 𝑓𝑓𝑖𝑖 

and the target class that should be maximized (i.e., max
𝑖𝑖
𝐼𝐼(𝑓𝑓𝑖𝑖; 𝑐𝑐)) and the term ∑ 𝐼𝐼(𝑓𝑓𝑖𝑖; 𝑓𝑓𝑠𝑠)𝑓𝑓𝑠𝑠∈𝑆𝑆  

indicates the dependency of  the new feature with the already selected features. This term should 

be minimized (i.e., min
𝑖𝑖
∑ 𝐼𝐼(𝑓𝑓𝑖𝑖; 𝑓𝑓𝑠𝑠)𝑓𝑓𝑠𝑠∈𝑆𝑆 ). The parameter 𝛽𝛽 is the redundancy parameter, which 

regulates the relative importance of the MI between the new feature and the already selected 

features with respect to the MI with the output class. 

 

3.3. Classification of EEG Features 

Each EEG segment was split into 16 blocks of 1.475 s duration. Original features were 

formed from each block. Thus, 1600 feature vectors were constructed from each EEG subset. Then, 

the MI-based feature selection process was carried out to select optimal feature vector. For 

classification of the selected features, a two-layer feed-forward neural network was employed to 



 

perform the classification. The scaled conjugate gradient algorithm was used to train the network 

using the selected feature vectors. The number of neurons in the hidden layer was 20 and the output 

layer equal to the number of classes. Repeated random subsampling for evaluation, whereas during 

each repeat, 60%, 5%, and 35% of the feature vectors are randomly selected for training, 

validation, and testing, respectively. The evaluation procedure was repeated 20 times and the mean 

and standard deviation were calculated. Classifications were executed using the well-known 

MATLAB software package. 

For the EEG dataset described in Section 2, five different cases of classification were 

considered. The cases were selected due to their clinical relevance and their wide usage by the 

researchers (Alam & Bhuiyan, 2013; Riaz et al., 2016). In Case I, the sets A and B were grouped 

as healthy class, the sets C and D were grouped as interictal class, and the set E was recognized as 

ictal class. In Case II, the sets A, D, and E were considered as healthy, interictal, and ictal classes, 

respectively. In Case III, the sets A and E were classified as healthy and ictal classes, respectively. 

In Case IV, the sets A, B, C, and D were grouped as nonseizure class and the set E as seizure class. 

In Case V, the first class consisted of the set D as interictal class and the second class included the 

set E as ictal class. 

 

4. Results and Discussion 

4.1. RP of the EEG signals 

Fig. 3 shows examples of RP of the EEG recordings corresponding to healthy (A and B), 

interictal (C and D), and ictal (E) conditions. It is observed that there is  vertical and horizontal 

line structure in the RP of the healthy subject (Fig. 3 (a) and (b)).  The rectangles formed by the 

vertical and horizontal lines indicate that the system trapped in a state and does not change or 



 

changes very slowly for some time. The vertical structures in the RP of EEG indicate intermittency 

and laminar. Interesting observation is the white band structures during seizure-free (Fig. 3 (c) and 

(d)). White area or bands correspond to sudden changes in the dynamic as well as extreme events 

(Webber & Marwan, 2015). During a seizure, diagonal lines and checkerboard structures are 

observed in RP (Fig. 3 (e) and (f)). These structures indicate the system with periodic or quasi-

periodic behavior (Webber & Marwan, 2015). The results demonstrate that the RP can visualize 

the dynamic changes of the EEG signals during different brain states.  

Fig. 3 

 

4.2. MI based Feature Selection 

Fig. 4 shows the results of feature selection using mRMR for the Case I.  It is observed that 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is the first relevant feature that is selected (Fig. 4 (a)). According to mRMR criterion, the 

feature that has maximum MI with the class labels is selected as the first relevant feature. As 

already mentioned, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  is a RQA measure is based on the diagonal lines structures and indicates 

repeating recurrences within a state. The diagonal lines are long for periodic signals and short for 

chaotic signals (Webber & Marwan, 2015). The second, third, fourth, and fifth selected features 

are 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝑅𝑅𝑅𝑅, 𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷 and 𝐷𝐷𝐷𝐷𝐷𝐷, respectively (Fig. 4 (b)-(e)). 

Table 1 summarizes the results of feature selection using mRMR for different cases of 

classification. It is observed that in all cases, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is the first feature that is selected. Moreover, 

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is also selected in all cases. 

Fig. 4 

Table 1 

 



 

4.3. Classification 

The classification accuracy for different RQA-based features is shown in Fig. 5. It is 

observed that 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 and Trans features provide a high classification accuracy for the Cases III, IV, 

and V with respect to the cases I and II. This is because the EEG data grouped into two classes in 

the Cases III, IV, and V while the classification Cases of I and II have three classes. Moreover, 

diagonal structures within the RP reflect the system with periodic and quasi-periodic behavior and 

the Trans feature can distinguish regular from irregular dynamics. The L could discriminate 

accurately the Case III which contains only healthy and ictal classes. 

Fig. 5 

The average of overall detection accuracy, using selected features by mRMR algorithm 

and the feature vectors used in (Niknazar et al., 2013) is shown in Table 2. The results show that 

the average of detection accuracy is 100% using only five selected features for all cases. In 

(Niknazar et al., 2013), RQA was applied on the EEG recordings provided by Dr. R. Andrzejak as 

in the current study. The RQA-based features (i.e., 𝐷𝐷𝐷𝐷𝐷𝐷, 𝐿𝐿, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐷𝐷𝐷𝐷) of the original 

signal and their subbands (i.e., delta, theta, alpha, beta, and gamma) were used for classification. 

The overall accuracy was 89.50% and 98.67% using the RQA-based features of the original signal 

(i.e., six features) and a combination of the original signal and subbands (i.e., 36 features), 

respectively. 

Table 2 

The classification accuracies obtained in this study and in the previous studies are 

summarized in Table 3. Only the previous studies that used the data set provided by Dr. R. 

Andrzejak were considered for comparison to provide a fair comparison.  

Table 3 



 

5. Conclusion 

There is significant interest in developing accurate automatic seizure detection. The 

classification of EEG into healthy, ictal, and interictal EEGs is the main goal of seizure detection. 

Two of the major components of a classification process are the feature extraction and feature 

selection. Different linear approaches have been proposed for time series analysis of EEG signal 

and extraction features. However, the linear approaches ignore the underlying nonlinear EEG 

dynamics. The complex nonlinear EEG dynamics show different transitions between regular, 

laminar, and chaotic behaviors. The knowledge of these transitions is necessary for characterizing 

the underlying dynamics. A very useful nonlinear approach for measuring the complexity of a 

nonlinear dynamical system is RQA. Up to now, different RQA measures, including 𝑅𝑅𝑅𝑅, 𝐷𝐷𝐷𝐷𝐷𝐷, 𝐿𝐿, 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐷𝐷𝐷𝐷, and 𝑡𝑡𝑟𝑟𝑡𝑡𝑙𝑙𝑑𝑑 have been used as the features of the EEG signal for seizure 

detection. In the current study, different RQA measures, including 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷1, 𝐷𝐷2, 𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷 and 𝐷𝐷𝑟𝑟𝑚𝑚𝑙𝑙𝑇𝑇 

have been introduced as the features for the EEG classification. These measures are very important 

for detecting the dynamic transitions and measuring the complexity. 

Moreover, a systematic approach based on MI has been proposed to select the most relevant 

features. The first selected feature in all cases was 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚. Deterministic processes have longer 

diagonals and less single, isolated recurrence points, whereas chaotic signals cause the short 

diagonal lines. The diagonal lines for periodic signals are long and for stochastic signals are absent 

(Webber & Marwan, 2015). 

During the interictal state, the EEG signals have lower amplitude and are less rhythmic and 

more irregular in morphology. During ictal state, an abrupt change in the amplitude, frequency, 

and morphology of the EEG signals occurs, and rhythmicity increases and a synchronization of 

activity occurs happens across widespread areas of the cerebral cortex. Therefore, diagonal lines 



 

can provide a suitable measure for prediction of rhythmic and periodic EEG patterns. As it can be 

seen in Fig. 3 (e) and (f), the RP of the brain signals during ictal state has the checkerboard 

structures indicating periodic behavior whereas such structures have not been observed during 

healthy and interictal states. 

The second selected feature is 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚, which indicates the vertical line structure in the RP. 

RP of the healthy signal (Fig. 3 (a) and (b)) contains vertical and horizontal lines that form 

rectangles. This structure indicates that some states do not change or change slowly for some time 

(laminar states) or the process is halted at a singularity in which the dynamic is stuck in paused 

states.  

Another selected feature is DET, which is a measure of determinism. In the seizure state, 

excessive synchronization of large neuronal populations occurs, leading to a hypersynchronous 

state which implies an increasing determinism of EEG data. Therefore, DET can be a suitable 

measure for seizure detection. 𝐷𝐷𝑟𝑟𝑚𝑚𝑙𝑙𝑇𝑇 and 𝑅𝑅𝑃𝑃𝐷𝐷𝐷𝐷 are other complexity measures which are selected 

as the features. 

The results of this study show that a robust accurate seizure detection with a short period 

of time (1.475 s) can be obtained using the proposed method. The method could distinguish 

healthy, ictal, and interictal states with 100% classification accuracy. 
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Tables/Figure Legends 

Table 1. Selected features using mRMR algorithm for difference cases of classification. 

Table 2. The average of classification accuracy (± Standard Deviation) for different number of 

selected features. 

Table 3. A comparison of the results obtained by the proposed method and others’ methods. 

Figure 1. Examples of EEG signals from each of the five subsets A, B, C, D, and E. 

Figure 2. A schematic of the recurrence points of the second type (solid circles) and the sojourn 

points (open circles). 

Figure 3. Recurrence plot of a block of subsets A (a), B (b), C (c), D (d), and E (e-f). 

Figure 4. Feature selection process using mRMR algorithm for the Case I. Selection of the first 

(a), second (b), third (c), fourth (d), and fifth (e) feature. 

Figure 5. Classification accuracy of different features for different cases of classification (Case I: 

Dark blue, Case II: Blue, Case III: Green, Case IV: Red, Case V: Brown). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 1. Selected features using mRMR algorithm for difference cases of classification. 

Case Case I Case II Case III Case IV Case V 

1st selected feature Lmax Lmax Lmax Lmax Lmax 

2nd selected feature Vmax Vmax DET Vmax Vmax 

3rd selected feature RR LAM Vmax RR LAM 

4th selected feature PRDE T1 T1 PRDE Trans 

5th selected feature DET T2 TT DET T1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 2. The average of classification accuracy (± Standard Deviation) for different number of 

selected features.  
                             Case 

RQA-based features signal I II III IV V 

3 selected features (mRMR) Original 87.91±4.39 98.61±4.79 99.85±0.64 99.6±0.43 98.9±0.34 

4 selected features  (mRMR) Original 97.59±1.52 99.28±1.52 100 100 100 

5 selected features  (mRMR) Original 100 100 100 100 100 

DET, L, 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷𝐸𝐸𝐷𝐷𝑅𝑅, 𝐿𝐿𝐿𝐿𝐿𝐿, 𝐷𝐷𝐷𝐷 
(features used in [29]) 

Original 89.5±1.72 - - - - 

Delta band 67.46±2.68 - - - - 

Theta band 77.53±2.43 - - - - 

Alpha band 63.73±3.35 - - - - 

Beta band 82.73±2.26 - - - - 

Gamma band 86.6±7.5 - - - - 

Original + subbands 98.67±0.52 - - - - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 3. A comparison of the results obtained by the proposed method and others’ methods. 

              Case 
 
             Authors  

Case 1  Case II Case III Case IV Case V Number 
of feature  

Block 
Duration method 

Peker et al. (2016) 98.28% 99.30% 100 99.33% - 5 23.6 DTCWT-CVANN 

Shafiul Alam et al. 
(2013) 80% 100% 100% 100% 100% 3 1.475 

EMD-higher order 
moments- neural 

network 

Riaz et al. (2016) 94% 91% 99% 98% 96% 6 23.6 EMD-Based Temporal 
and Spectral Features 

Srinivasan et al. 
(2007) - - 100 - - 1 2.95 ApEn- neural network 

Ghosh-Dastidar et al. 
(2007) - 96.7% - - - 9 23.6 

Mixed-band wavelet-
chaos, Levenberg-

Marquardt 
backpropagation NN 

Niknazar et al. (2013)  98.67% - - - - 36 23.6 
RQA on EEG signal 
and its wavelet-based 

sub-bands-ECOC 

Kumar et al. (2014)  - - 100% 97.38% 95.85% 6 23.6 DWT-Fuzzy ApEn-
SVM 

Guo et al. (2011)  - 93.5% 99.2% - - 3 23.6 Genetic algorithm-
KNN  

Orhan et al. (2011)  

95.6%    - 56 

23.6 
DWT-K-means 

clustering-probability 
distribution-MLPNN 

 96.67%    56 
  100%   4 
   99.6%  18 

Iscan et al. (2011) - - 100% - - 10 1.475 combined time and 
frequency features 

Wang et al. (2011) - - 99.44% - - 4 1.475 
wavelet packet 

entropy-hierarchical 
EEG classification 

Naghsh-Nilchi et al. 
(2010) - 97.49% - - - 27 23.6 Eigen-system spectral 

estimation-MLPNN 

Subasi et al. (2010) - - 100% - - 24 2.95 DWT-PCA, ICA, 
LDA and SVM 

Guo et al. (2010) - - 99.6% 97.77% - 5 23.6 DWT-line length 
feature-MLPNN 

Ubeyli (2009) - 96.33% - - - 9 1.475 
DWT-Lyapunov 

exponents, 
Eigenvector-MLP 

Tzallas et al. (2009) - 100% 100% - - 3 23.6 
Time-Frequency 
analysis- neural 

network 
Ghosh-Dastidar et al. 

(2008) - 96.6% - - - 9 23.6 Wavelet-chaos, PCA-
NN 

Subasi (2007) - - 94.5% - - 16 2.95 DWT-mixture of 
expert model 

Guler et al. (2005) - 96.79% - - - 4 1.475 
Lyapunov exponent-

Recurrent neural 
network 

This work 100% 100% 100% 100% 100% 5 1.475 
RQA, mutual 

information, neural 
network 

 
 



 

 

 
Figure 1. Examples of EEG signals from each of the five subsets A, B, C, D, and E. 
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Figure 2. A schematic of the recurrence points of the second type (solid circles) and the sojourn 
points (open circles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
(a)                                                       (b)                                                         (c) 

 
                                 (d)                                                         (e)                                                          (f) 
 
Figure 3. Recurrence plot of a block of subsets A (a), B (b), C (c), D (d), and E (e-f). 
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(a)                                                           (b)                                                        (c) 

 
                                                              (d)                                                          (e) 

 
Figure 4. Feature selection process using mRMR algorithm for the Case I. Selection of the first 
(a), second (b), third (c), fourth (d), and fifth (e) feature. 
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Figure 5. Classification accuracy of different features for different cases of classification (Case I: 
Dark blue, Case II: Blue, Case III: Green, Case IV: Red, Case V: Brown). 
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