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mat to develop a task consisting of 16 craving inducing 
cues and 2 neutral pictures. Each picture was shown to 
the subjects by interviewer for 10 seconds in a fixed 
order (same order as the fMRI task but each 8 craving 
pictures followed by only 1 neutral picture). The sub-
jects were asked to quantify their inner craving feeling 
after watching each picture with a VAS ruler (20 cm 
line from “not at all” to “at most” with 1 to 100 grades 
on its back). The mean scores of VASs for 16 crav-
ing pictures were assigned as subjective cue-induced 

craving (CIC) score. The recorded scores of VAS from 
0 to 100 were categorized in 3 subdivisions: non-re-
sponder (VAS:0-30), semi-responder (VAS:30-70), 
and responder (VAS:70-100) (Ekhtiari et al., 2007). 
Finally, 12 out of 30 subjects turned out to be respond-
ers whose data were used in this study.

3.2.3. Data acquisition

We used a 1.5 Tesla GE Signa scanner and the fMRI data 
were obtained using an Echo Planar Imaging (EPI) proto-

Figure 4. Proposed parcellation approach results for one subject, divided to 13 function-
ally homogeneous areas based on AIC criterion.

Figure 3. Functional imaging study of pictorial heroin-cue-induced craving assessment task..

Neutral pictures=8×3 sec Rest=24 sec Rest=24 secCraving stimuli=8×3 sec
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col (TE=60 ms, TR=3000 ms, slice thickness=7mm, band 
width=62.5 KHz, and flip angle=90°). Fifteen contiguous 
axial slices, parallel to the “anterior commissure-posterior 
commissure” line were acquired according to the Talairach 
atlas. 3D T1-weighted images were also obtained for regis-
tration of fMRI data to the structural map of the brain.

3.2.4. Data analysis

FEAT package (fMRI Expert Analysis Tool) version 5.42 
(obtained from http://www.fmrib.ox.ac.uk/fsl) was used 
for data preprocessing. At the first step of preprocessing, 
motion correction using FMRIB’s linear registration tool 
(MCFLIRT) (Jenkinson & Smith, 2001) was applied. 
Then, non-brain areas were excluded by using FMRIB’s 
brain extraction tool (BET) (Smith, 2002). Afterwards, 
spatial smoothing with a Gaussian kernel of 5 mm FWHM, 
intensity normalization, and high-pass temporal filtering 
were used in preprocessing pipeline. However, the filtering 
could not reduce signal fluctuations synchronous with the 
breathing cycle (because breathing cycles occur at about 0.3 
Hz, and not to be sampled with a TR of 3 s). However, it 
would reduce signal variations related to breath-to-breath 
changes in respiration depth and rate (Gaussian weighted 
least squares straight line fit with sigma equal to 25 s). This 
filter is a sharp roll off FIR filter that did not introduce auto-
correlations to the data. Time-series statistical analysis was 
carried out using FMRIB’s improved linear model (FILM) 
with local autocorrelation correction (Woolrich, Ripley, & 
Brady, & Smith, 2001).

Heroin cues versus neutral pictures modeled as explana-
tory variables in both methods, because our objective in 
this fMRI study was identifying brain regions specially 
involved in cue-reactivity procedure. These variables 
were used for statistical analysis within the context of the 
general linear mode. Z-values (Gaussianized T/F) of sta-
tistical images were thresholded using voxels determined 
by Z>2.3 and a (corrected) voxel significance threshold 
of P-value equal to 0.05. To analyze these datasets, 4 
desired contrasts were defined: 1) neutral, 2) craving, 3) 
neutral>craving, and 4) neutral<craving.

After data preprocessing, the functional features of the 
voxels were achieved by the estimated β-parameters for 
the 4 desired contrasts. After combining these features 
with the corresponding anatomical features that include 
the coordinates of each voxel, the desired data were 
ready for parcellation.

3.2.5. Obtained results

As stated previously, the purpose of analyzing the above 
data with the JDE method is to probe the effect of locally 
estimated HRF on the results of activation detection versus 
considering a fixed HRF for the whole brain. In Figure 4, 
the result of the proposed parcellation approach on a subject 
is shown which is divided to 13 functionally homogeneous 
areas based on AIC. In order to determine the number of 
parcels, AIC values for K=1:30 was calculated and the op-
timal model (corresponding to minimum AIC) was found 
to be K=13. In previous work, the optimal number of par-
cels was about 200 per hemisphere in order to have the best 
functional homogeneity according to Bayesian information 
criterion (Thyreau et al., 2006). 

It should be mentioned that fMRI protocol used in that 
study was designed to activate brain areas related to several 
cognitive functions (motor, audio, video perception, sen-
tence analysis, and computation). Thus, it cannot be expect-
ed to obtain this number of optimal parcels, 400, in fMRI 
data set involved in single cognitive task like the task we 
used in this experiment. Moreover, our dataset was acquired 
with block-design protocol and variety of hemodynamic re-
sponse function was less reflected in this kind of dataset 
compared to the event-related designed dataset.

To better represent the results of parcellation, masks of a 
parcel out of 13 parcels are shown in Figure 5. Integration 
and coherence of voxels within each parcel are shown in 
Figure 5. After defining functionally homogenous parcels, 
the JDE method was applied on the data to simultaneously 
estimate HRF and activated voxels in each parcel. To evalu-
ate the effect of locally estimated HRF on the activation de-
tection sensitivity, the results of this method were compared 
to the results of standard GLM method using a fixed HRF.

Figure 5. One parcel out of the 13 parcels, shown in Figure 4.
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Likewise, to evaluate the effect of using variable HRF 
versus fixed HRF and reliability of activated areas in 
the heroin-cue reactivity study, group analysis was con-

ducted based on the Bayesian mixed effects analy-
sis method for both approaches. The optimal contrast,  
craving>neutral, was selected among the 4 contrasts, since 

Figure 6. The average of group analysis on 12 patients by the FSL software for optimal 
contrast (craving>neutral).

Figure 7. The average of group on 12 patients by joint detection estimation method based 
on functionally homogenous regions for optimal contrast (craving>neutral).

Maleki-Balajoo, S., et al. (2016). Local HRF and Sensitivity of Detection. Basic and Clinical Neuroscience, 7(4), 299-314.



309

Basic and Clinical
October 2016. Volume 7. Number 4

this contrast provides useful information regarding brain 
regions involved in heroin-cue reactivity study. The group 
analysis results are illustrated in Figures 6 and 7, respec-
tively, for the standard GLM and JDE methods.

Finally, to evaluate the achievements of JDE method based 
on locally HRF estimation in functionally homogenous re-
gions, the activated areas were reported based on specific 
region of interest (ROI). To this end, functional brain maps 

Table 2. Comparison and analysis of the obtained results of both methods by calculating the percentage of activated voxels and 
Zmax/ Zmean for each regain in left and right hemisphere.

Sub-
corti-

cal 
area

Talarich ROI

JDE method, HRF is estimated locally Standard GLM, a fixed HRF 

Left hemisphere Right hemisphere Left hemisphere Right hemisphere

Percent-
age of 

activated 
voxels 

(%)

Zmax/
Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/
Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/Zmean

1

Cere-
bellum

Posterior lobe. 
tuber 47.96 8.61/4.35 40.68 11.44/5.30 37.68 8.46/4.47 24.52 6.53/3.72

2 Anterior lobe.
culmen 5.31 3.82/2.74 2.95 5.26/2.95 10.13 7.64/3.96

3 Posterior lobe.
declive 50.09 9.08/4.19 10.46 8.53/4.70

4 Posterior lobe.
uvula 22.55 6.00/3.09 10.54 4.40/3.09

5 Posterior lobe.
pyramis 13.18 7.36/4.16 15.88 8.23/4.23

6 Inferior semi-
lunar lobule 8.91 5.56/3.30

7
Basal 

ganglia

Sublobar. caudate 
head 60.34 6.77/4.20 53.81 4.89/3.33 32.32 5.67/3.29

8 Sublobar. puta-
men 16.33 7.00/4.93 30.76 4.144/3.10 15.59 5.94/2.99

9

Limbic 
lobe

Limbic lobe. 
cingulate gyrus 27.74 6.93/3.93 18.72 7.29/4.00

10
Limbic lobe. 

cingulate gyrus.
BA32

27.67 8.80/4.23 36.98 7.24/4.21 31.5 8.77/4.49

11 Limbic lobe. ante-
rior cingulate 18.36 5.49/3.50 19.93 5.83/3.664 41.15 7.11/3.69 37.9 7.77/3.85

12
Limbic lobe.

anterior cingulate. 
BA24

34.22 5.05/3.35 45.57 6.25/3.53

13
Limbic lobe.

anterior cingulate.
BA3

16.52 8.61/5.21

14
Limbic lobe. pos-
terior cingulate.

BA23
69.41 5.28/3.55

15 Limbic lobe. pos-
terior cingulate 59.11 5.72/3.86

16
Limbic lobe. 

cingulate gyrus.
BA23

68.96 5.04/3.68
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Sub-
corti-

cal 
area

Talarich ROI

JDE method, HRF is estimated locally Standard GLM, a fixed HRF 

Left hemisphere Right hemisphere Left hemisphere Right hemisphere

Percent-
age of 

activated 
voxels 

(%)

Zmax/
Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/
Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/Zmean

17

Frontal  
lobe

Superior frontal 
gyrus. BA9 26.65 6.55/3.40 39.49 5.77/3.40 22.77 6.02/3.98 59.35 11.02/5.34

18 Superior frontal 
gyrus. BA10 15.81 5.99/3.51 11.17 4.98/3.12 34.91 7.31/4.05

19 Superior frontal 
gyrus. BA8 77.77 7.80/4.50 51.34 6.31/3.50 43.67 8.33/3.98 52.10 8.15/4.48

20 Superior frontal 
gyrus 23 7.25/4.30 32.84 6.32/3.73 23 6.75/3.91 32.68 8.81/4.26

21 Superior frontal 
gyrus. BA6 20.41 9.43/4.77 15.2 6.73/4.28 10.55 7.03/3.64 10.81 8.38/4.55

22 Inferior frontal 
gyrus 21.03 8.66/3.97 19.76 5.60/3.33

23 Medial frontal 
gyrus 26.08 5.28/3.41 27.18 6.76/3.74 27.89 7.99/4.01

24 Inferior frontal 
gyrus. BA46 58.08 7.98/4.54 43.22 5.00/3.35

25 Middle frontal 
gyrus 62.5 9.11/4.00 20.1 7.11/3.53 15.9 6.64/3.52

26 Middle frontal 
gyrus. BA10 13.65 4.15/3.05 31.25 5.12/3.15 26.34 7.75/3.66 29.89 7.61/4.15

27 Middle frontal 
gyrus. BA11 23.04 5.24/3.52 32.07 6.75/3.55

28 Middle frontal 
gyrus. BA46 51.27 9.39/4.47 31.26 4.97/3.30 42.37 8.01/4.42

29 Medial frontal 
gyrus. BA9 29.46 6.64/3.61 25.63 6.00/3.51 25.63 6.79/3.97

30 Middle frontal 
gyrus. BA6 29.64 8.56/3.95 21.48 4.92/3.30 22.51 7.86/3.92 7.29 6.89/3.56

31 Middle frontal 
gyrus. BA8 50.61 6.74/3.92 50.60 8.32/4.73 21.63 6.52/3.79 42.85 7.04/4.08

32 Inferior frontal 
gyrus. BA47 25.62 7.03/4.14 7.59 5.021/3.12 7.73 6.09/3.63

33 Rectal gyrus. 
BA11 29.44 4.22/3.11

34

Tempo-
ral lobe

Superior temporal 
gyrus 17.77 6.89/3.93 10.9 5.94/3.32

35 Superior temporal 
gyrus. BA38 43.62 6.79/3.72

36 Inferior temporal 
gyrus. 44.44 6.88/3.55

37 Inferior temporal 
gyrus. BA20 25.11 5.88/3.34 25.14 9.48/4.90 14.53 8.48/4.56

38 Inferior temporal 
gyrus. BA37 64.76 5.68/3.79
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(suprathreshold regions as activated brain areas were over-
laid on higher resolution anatomical MRI) resulting from 
group analysis in the two methods were registered to a Ta-
larich atlas template. Then, the Talarich atlas index template 
was used to automate labeling of the activated areas, for the 
ultimate goal of finding the number of activated voxels in 
each Talarich ROI. Moreover, the maximum of the Z-values 
and their mean value in an ROI was calculated to examine 
the ability of the 2 methods in generating strong Z-values. 

Table 2 presents a comparison and analysis of the ob-
tained results of 2 methods. The thresholds in both meth-
ods were set to Z>2.3 and the corrected voxel significance 
threshold of P value was 0.05 for having the same false 
alarm rate. The results illustrated the main achievements 
as follows: 1) The volume of the detected regions by JDE 
method was larger than the other method, 2) In the group 
analysis, JDE method found those activations that were 
missed by the fixed HRF; for example, it detected a priori 
“regions-of-interest” in the limbic lobe (anterior cingulate 
cortex [ACC], posterior cingulate cortex [PCC] and cin-
gulate gyrus), basal ganglia, especially striatum (putamen 
and head of caudate) and cerebellum in addition to the 
areas detected by the standard GLM with fixed HRF, and 
3) JDE method obtained higher Z-values of local maxima 
compared to the standard GLM that uses a fixed HRF. 
These activated brain regions are the main areas involved 
in cue reactivity or response to drug related cues during 
“craving induction by cues” paradigms. They were also 
reported in previous studies as the areas involved in crav-
ing (Bonson et al., 2002; Grant et al., 1996; Olbrich et al., 
2006; Breiter et al., 1997; Brody et al., 2007; Kilts et al., 
2001; Myrick et al., 2004).

4. Discussion 

We presented a probabilistic method for defining the func-
tional regions of the brain based on finite mixture model 
and examining the effect of locally estimated HRF on ac-
tivation detection sensitivity. Also, we used JDE method to 
estimate hemodynamic response function locally and de-
tected activated areas simultaneously in each functional re-
gion. Simulation studies showed that the parcellation results 
of our proposed method were more accurate than previous 
methods like K-means and GMM.

Experimental results showed that local estimation of 
HRF by JDE method has great impact on the reliability of 
the activation detection, confirming Badillo, Vincent, and 
Ciuciu (2011) study. In addition, they showed that the use 
of local HRF increased the volume of the detected areas. 
Also, some drug craving a priori ROI were detected in 
the limbic lobe (ACC, PCC, and cingulate gyrus), basal 
ganglia, especially striatum (putamen and head of cau-
date) and cerebellum. These brain regions are activated 
as the main areas involved in cue reactivity or response 
to drug-related cues during “craving induction by cues” 
paradigms. These areas were also reported in previous 
studies (Bonson et al., 2002; Grant et al., 1996; Olbrich 
et al., 2006; Breiter et al., 1997; Brody et al., 2007; Kilts 
et al., 2001; Myrick et al., 2004). Limbic system includes 
brain areas which provide the anatomical substrate for 
motivated behavior anatomically and functionally. In the 
study of Rodriguez de Fonseca and Navarro (1998), the 
functional role of main limbic system elements, especial-
ly the extended amygdala and its connections to drug de-
pendence was reviewed. Moreover, great activation was 
detected in the cerebellum. In contrast to the traditional 
belief that cerebellum is purely a motor control device, 

Sub-
corti-

cal 
area

Talarich ROI

JDE method, HRF is estimated locally Standard GLM, a fixed HRF 

Left hemisphere Right hemisphere Left hemisphere Right hemisphere

Percent-
age of 

activated 
voxels 

(%)

Zmax/
Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/
Zmean

Percent-
age of 

activated 
voxels 

(%)

Zmax/Zmean

39

Tempo-
ral lobe

Middle temporal 
gyrus 16.28 6.48/4.19 19.08 6.19/3.54 18.67 6.59/4.22

40 Middle temporal 
gyrus. BA 21 27.6 6.40/3.35 11.13 6.86/4.51 28.95 7.49/4.30

41 Fusiform gyrus 38.34 9.69/5.04

42 Fusiform gyrus.
BA 37 36.90 7.55/4.75 44.44 11.42/5.74
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apparently it also contributes to cognitive processing and 
emotional control (Franklin et al., 2007).

Activated areas in both methods (cited in Table 2) were 
largely left lateralized, which is similar to the findings 
among other drug users for instance, cocaine users (Ga-
ravan et al., 2000). The main component of basal ganglia 
is striatum (caudate nucleus and putamen). A part of stria-
tum is connected to limbic structures such as amygdala, 
hippocampus, midline thalamus, and certain regions of the 
prefrontal cortex. The functional role of striatum is to con-
trol emotional and motivational aspects of behavior. Differ-
ent forms of psychopathology such as addictive behavior 
cause dysfunction of striatum structurally and functionally 
(Everitt et al., 1999; Robbins & Everitt, 2002).

 Animal and human imaging studies have revealed the key 
role of striatum as a focal point for the binge/intoxication 
stage in the addiction cycle (Koob & Volkow, 2010). The 
main function of the caudate and putamen in drug addic-
tion is related to their participation in habit-based learning 
that may drive compulsive drug seeking behavior (Fred-
erico et al., 2012). Third, the Z-values originating from 
the locally HRF consideration are larger than the Z-values 
resulted from fixed HRF consideration. The larger Z-value 
indicates that the activation level of that region is high due 
to the stimulus pattern and shows the significance of the 
area in task-related involvements of ROIs (details are pro-
vided in Table 2). Importance of drug craving experience 
in the continuation of addiction has been repeatedly con-
firmed. Better understanding of neural correlates of heroin 
craving is important both theoretically and clinically. These 
may suggest methods given HRF locally as a potential al-
ternative analysis pipeline for the future drug craving fMRI 
studies.
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