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Introduction: Various treatment methods for drug abusers will result in different success rates. 
This is partly due to different neural assumptions and partly due to various rate of relapse in 
abusers because of different circumstances. Investigating the brain activation networks of treated 
subjects can reveal the hidden mechanisms of the therapeutic methods.

Methods: We studied three groups of subjects: heroin abusers treated with abstinent based therapy 
(ABT) method, heroin abusers treated with Methadone Maintenance Therapy (MMT) method, 
and a control group. They were all scanned with functional magnetic resonance imaging (fMRI), 
using a 6-block task, where each block consisted of the rest-craving-rest-neutral sequence. Using 
the dynamic causal modeling (DCM) algorithm, brain effective connectivity network (caused 
by the drug craving stimulation) was quantified for all groups. In this regard, 4 brain areas were 
selected for this analysis based on previous findings: ventromedial prefrontal cortex (VMPFC), 
dorsolateral prefrontal cortex (DLPFC), amygdala, and ventral striatum.

Results: Our results indicated that the control subjects did not show significant brain activations 
after craving stimulations, but the two other groups showed significant brain activations in all 
4 regions. In addition, VMPFC showed higher activations in the ABT group compared to the 
MMT group. The effective connectivity network suggested that the control subjects did not have 
any direct input from drug-related cue indices, while the other two groups showed reactions to 
these cues. Also, VMPFC displayed an important role in ABT group. In encountering the craving 
pictures, MMT subjects manifest a very simple mechanism compared to other groups.

Conclusion: This study revealed an activation network similar to the emotional and inhibitory 
control networks observed in drug abusers in previous works. The results of DCM analysis 
also support the regulatory role of frontal regions on bottom regions. Furthermore, this study 
demonstrates the different effective connectivity patterns after drug abuse treatment and in this 
way helps the experts in the field.
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1. Introduction

he neurocognitive process of drug craving 
in chronic drug abusers has been studied 
before and the brain regions involved in this 
process are well recognized (Wilson, Say-
ette, & Fiez, 2004; Sutherland, McHugh, 

Pariyadath, & Stein, 2012; Tang, Fellows, Small, & Da-
gher, 2012; Yalachkov, Kaiser, Naumer, 2012). Previ-
ous studies have reported the key role of the amygdala 
and prefrontal cortex in the cue-induced craving process 
(Bechara, Damasio, Damasio,  & Lee, 1999). When ex-
posed to drug cues, the brain regions, such as ventromedial 
prefrontal cortex (VMPFC) (Ben-Shahar, et al. 2013), dor-
solateral prefrontal cortex (DLPFC) (Wilson et al. 2004; 
George and Koob 2013; Hayashi, Ko, Strafella, & Dagher, 
2013; Batista, Klauss, Fregni, Nitsche, & Nakamura-Pa-
lacios, 2015), ventral striatum (Naqvi and Bechara 2009), 
and amygdala (Bechara, Damasio, & Damasio, 2003) dis-
play activation in different drug dependents. 

The associated brain regions do not act alone but work 
as parts of hidden networks. The recent studies have tried 
to find out and quantify these networks (Chase, Eickhoff, 
Laird, & Hogarth 2011; Sutherland et al., 2013). The 
existing interactions between brain regions (nodes) can 
be passive or active; the passive type is called functional 
connectivity and the active one effective connectivity. Ef-
fective connectivity follows the theory of causality (Pearl, 
2009). The causality in brain networks has been studied 
before, but the drug craving networks have been inves-
tigated in a few studies (Ray, Haney, Hanson, Biswal, 
& Hanson, 2015). Based on some studies, chronic drug 
use can change the pattern of brain activation networks 
in drug dependents when exposing to drug cues (Goudri-
aan, de Ruiter, Van Den Brink, Oosterlaan, & Veltman 
2010; Janes, et al. 2010; Ma, et al, 2011; Lu, et al., 2012; 
Cisler, et al., 2013; Ding and Lee 2013a; Ding and Lee 
2013b; Yang, et al., 2014). Furthermore, the regulatory 
effect of cortex on subcortical regions has already been 
proven, and their interactions follow a causal network 
pattern (Bechara, et al., 2001). 

The causal networks can be quantified using different 
methods. Some methods address just the existence of the 
networks, but some other seek deeper to find more de-
tails. Two interesting issues in these networks are first 
how regions affect each other and second how they af-
fect the relation among the regions. These networks can 
be quantified using effective connectivity measurement 
methods such as Structural Equation Modeling (SEM) 
(McLntosh & Gonzalez-Lima 1994; Buchel, 1997; As-
tolfi, et al. 2004; Laird, et al., 2008), Granger causal-

ity modeling (GCM) (Roebroeck, Formisano, Goebel, 
2005; Wang, Chen, Bressler, & Ding. 2007; Sato, et al., 
2010), and dynamic causal modeling (DCM).

We hypothesized that the fronto-amygdalar regulation is 
complex and not only the prefrontal regions such as VMP-
FC and DLPFC have reciprocal modulatory effects on the 
amygdala, but also they have indirect causal effects. The 
differences in the effective connectivity networks were 
investigated between the following three groups in our 
study: one group included subjects with no history of drug 
dependence as the control group, one group included sub-
jects who were successfully treated drug abuse with Meth-
adone Maintenance Therapy (MMT), and the last group 
included subjects who were successfully treated drug 
abusers with Abstinence Based Therapy (ABT) method.

2. Methods

The Ethics Committee of Tehran University of Medical 
Sciences approved the study protocol and consent form. 
Before scanning, the imaging procedure was described 
for all subjects and their written informed consents were 
obtained. After scanning, a counseling procedure was 
done for each subject to check for any probable adverse 
effect on the subject’s mental health, after presentation of 
drug-related cues.

2.1. Participants

Three study groups, each including 20 male subjects, 
were scanned. One group included subjects (with at least 
3 months of opiate abstinence) who were successfully 
treated by MMT based method; the second group (with 
at least 3 months of opiate abstinence) included subjects 
who were successfully treated by ABT based method; 
and the third group comprised control subjects age-
matched with two other groups, who did not have any 
history of drug abuse. The demographic characteristics 
of the three groups are presented in Table 1.

2.2. Functional magnetic resonance imaging task

The task was a block design task containing 6 consecu-
tive runs. Each run included one rest block of 24 s length 
(a cross was shown), one block of 24 s length as neutral (4 
images not related to heroin, each for 6 s, were shown to 
the subject), a second rest block, and a block of 24 s length 
as craving stimuli (4 images related to heroin, each for 6 s, 
were shown to the subject). The images (24 heroin-related 
and 24 neutral) were selected from International Affective 
Picture System (Lang, Bradley, & Cuthbert, 2005). The 
structure of the task is displayed in Figure 1.

T
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2.3. Functional magnetic resonance imaging data 
acquisition

Functional images were acquired with an Avanto 1.5T 
scanner (Siemens, Germany) with 8 channel head coil. The 
T2*-weighted images were acquired with TR=3000 ms, 
TE=50 ms, flip angel=90°, voxel size of 3×3×3 mm3, and 
matrix size of 64×64. Each volume was composed of 36 slic-
es which covered the whole brain in axial direction. Struc-
tural image was acquired with the following specification: 
T1-weighted with TR=1910, TE=3.55 ms, flip angel=30°, 
voxel size of 1×1×1 mm3, and matrix size of 256×256. The 
stimuli were presented using MR compatible goggles.

2.4. Preprocessing

FSL5 (Jenkinson, Beckmann, Behrens, Woolrich,  
Smith, 2012) MCFLIRT (Jenkinson & Smith 2001; Jen-
kinson, Bannister, Brady, & Smith, 2002) was used to 
correct the EPI images for the head motion. Slice timing 
correction was done using interleaved order, high-pass 
temporal filtering was done with the size of 96 s to re-
move the signal trend, a 3D Gaussian kernel with the size 
of 5 mm FWHM was used to smooth the functional im-
ages, and for group comparison the intensity normaliza-
tion was done as the last part of the preprocessing step.

2.5. Data analysis

The purpose of this study was not to examine the be-
tween group differences with regard to regional acti-
vations, so we did only within group analyses. Using 
FLAME (FMRIB’s Local Analysis of Mixed Effects), 
we included all 4 possible contrasts; i.e., craving, neu-
tral, craving>neutral, and neutral>craving. Based on the 
results, only the craving>neutral contrast supports the 
idea of stronger activation during watching craving cues 
vs. watching neutral images.

2.6. Time-series extraction

According to our neuroscientific hypothesis, we chose 
4 regions of interests (ROIs): VMPFC, DLPFC, ventral 
striatum, and amygdala. These regions have been shown 
to be active during a drug craving task. First we made a 
mask for each region in MNI space, then using transfor-
mation matrices, the masks were resliced and registered 
to each subject’s EPI images. These matrices were calcu-
lated during registration in preprocessing step (standar-
d2example_func.mat) and applied using the ApplyXFM 
tool in FSL5. The greatest eigenvariate of the voxels in 
each region was used as the time-series of the ROI. The 
extraction of eigenvariates from the time series across 

the voxels within each ROI was done using a singular 
value decomposition (SVD) method (Alter, Brown, 
Botstein, 2000). We used SPM121 Eigenvariate Tool for 
achieving this purpose. 

2.7. Dynamic causal modeling

Effective connectivity means the causal interrelation of 
the regions in the brain; however, this relation is in the 
neuronal level which cannot be measured by fMRI. Dy-
namic causal modeling as an established method to quan-
tify the effective connectivity includes 4 connectivity ma-
trices which display the strength of interconnections. The 
first matrix (A) contains the strength of endogenous links; 
these are the interrelations of regions in the absence of any 
input, the second matrix (B) contains the strength related 
to the effects of inputs on the links between regions, the 
third matrix (C) contains the direct strength of links of 
input effects on the regions and the last matrix (D) shows 
the strength of nonlinear links, which exerts from regions 
on the links connecting other regions. The equation which 
dominates the relation of these matrices is as follows:

z ̇=f(z,u,θ)=Az+{∑ ujB(j)+∑ ziD(i)}z+Cu
j=1 i=1

m n

Computing DCM for a group of subjects include some 
steps, which are shown in the Figure 2. Our model space 
contained 38 models, which reciprocally connected 4 
regions; the craving input emerged to various regions; 
linear and nonlinear links; and self-inhibitory links. The 
diverse models in the model space were used to answer 
different neuroscientific questions. Next we estimated all 
models for each subject to reach the exceedance proba-
bility measure for single subject analysis and these mea-
sures were used in the Bayesian model selection (BMS) 
(Stephan, Penny, Daunizeau, Moran, & Friston, 2009) 
process to compare the models. Evidently, comparing 
single models does not simply provide any useful infor-
mation, however, dividing the model space into families 
with similar features can yield the best result (Penny, et 
al., 2010). Thus, we divided the models into families 
according to their nonlinear links; separating linear and 
nonlinear models. Bayesian Model Averaging (BMA) 
was used to reach the final model. Also, we used SPM 
DCM12 Toolbox for computing the DCM network.

3. Results

3.1. GLM results

Statistical analysis of fMRI data of each group was 
done using FSL5 and the results indicated activations 

1. www.fil.ion.ucl.ac.uk/spm
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in all regions of interest. Figure 3 depicts the activation 
patterns in one of the defined contrasts (craving>neutral) 
and Tables 2, 3, and 4 present the group level results for 
all study groups (same contrast).

3.2. Dynamic causal modeling results

The time-series of each region was extracted accord-
ing to the method introduced in the previous section. The 
DCM estimation process was done for each model in the 
model space and the resulting exceedance probabilities 
were used in the process of BMS algorithm. Family par-

titioning was done according to the nonlinear links and 
using BMA, the final DCM networks for all groups were 
calculated. The BMA results are presented in Table 5. 
Considering 4 connectivity matrices, this table is divided 
into 4 sections (highlighted with gray color). 

The first section included the endogenous connections 
or the matrix A, the second section included the matrix B, 
the third section included matrix C, and the last included 
matrix D. The first column of the table presents the start 
and the end of each connection (for connections which do 
not exist in all groups, there are no rows). The next 3 col-

Table 1. The demographic characteristics of the three study groups.

ABT Stats

Age 32±2.1

Gender (male) 15

Education (year) 11.1±1.18

Abstinence duration (month) 15.6±4.1

Opium abusers 15

Heroin abusers 15

Alcohol abusers 12

Tobacco users 15

MMT

Age 34.7±2.52

Gender (male) 13

Education (year) 11.2±1.7

Abstinence duration (month) 16.4±3.82

Opium abusers 13

Heroin abusers 13

Alcohol abusers 10

Tabaco users 13

Control

Age 28.9±2.55

Gender (male) 16

Education (year) 13.2±1.46

Alcohol abusers 0

Tobacco users 0
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umns are the mean strength of the named connection for 
each group. Zero number in the cells represents the lack 
of that connection in the relevant group. The numbers in 
these 3 columns represent different meanings with regard 
to effective connectivity theory; the change in the vari-

ance of the links starting point will change the variance 
of the links ending point by the factor of the links mean 
strength. The sign of the number is directly related to the 
correlation of the variance change in two signals; positive 
means directly correlated and negative means correlation 

Figure 2. The diagram of calculating DCM.

Raw Data

Time- Series Extraction

Analysis

Single Subject DCM Estimation

Bayesian Model Averaging

Pre-processing

Model Space Definition

ROL Selection

Bayesian Model Selection

Group DCM

Figure 1. The task structure. R: represents Rest, C: represents Craving, and N: represents Neutral. There are 6 runs in the task 
each for 96 seconds.

One run of the task

4×6 Sec4×6 Sec

Neutral Stimiuli Craving Stimiuli

96s
24s

R N N N NR R R R R R CRC C C

RestRest
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Table 2. The group level activation results in (Craving>Neutral) contrast for ABT group. 

Anatomical Regions Cluster Size Z-values Local Maximum Co-Ordinates

Supracalcarine cortex

3123

4.07 0 -90 8

Lingual gyrus 3.96 2 -84 6

Lingual gyrus 3.93 -12 -76 -8

Cuneus 3.91 -10 -98 12

Retrosplenial cortex 3.66 12 -50 4

Cuneus 3.61 8 -76 28

Superior parietal lobule

1228

3.57 -2 -40 66

Primary somatosensory cortex 3.46 8 -44 68

Superior parietal lobule 3.44 -12 -40 52

Superior parietal lobule 3.41 -18 -42 42

Primary somatosensory cortex 3.29 0 -26 62

Superior parietal lobule 3.28 14 -48 72

Parahippocampal gyrus

314

3.73 26 -44 -8

Fusiform cortex 3.42 36 -46 -10

Parahippocampal gyrus 2.84 38 -26 -14

Fusiform cortex 2.58 38 -30 -16

Primary motor cortex

293

3.68 20 -18 66

Primary motor cortex 3.52 32 -28 62

Primary motor cortex 3.46 36 -30 66

Primary motor cortex 3.31 30 -28 68

Primary motor cortex 2.75 12 -28 72

Parahippocampal gyrus
258

3.51 -20 -42 -10

Fusiform cortex 3.43 -28 -48 -6

 Heschl’s gyrus

226

3.48 54 -26 18

Secondary somatosensory cortex 3.36 52 -28 24

Heschl’s gyrus 2.85 62 -24 12

Secondary somatosensory cortex 2.73 40 -28 28

Supramarginal gyrus 2.61 48 -38 14

Angular gyrus 2.46 58 -36 18

Jafari, A. H., et al. (2017). Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods. Journal of Basic and Clinical Neuroscience, 8(4), 285-298.



Basic and Clinical
July, August 2017, Volume 8, Number 4

291

with phase lag of 180°. The last 3 columns of the table 
present significant statistically meaningful differences 
between the groups (top of each column) in that link (the 
first column). These networks are depicted in Figure 4.

With regard to the effective connectivity network for 
the control group, the craving input link only modulated 
the links between the regions, but there was no modu-
lation for the other two groups and the input link only 
affected the amygdala. In the control group, DLPFC 
and amygdala affected ventral striatum but were not 
influenced by it. In the ABT group, VMPFC affected 
amygdala but there was no reverse effect. Finally in 
the MMT group, the relation from DLPFC to amygdala 
was a 1-way connection. Self-inhibitory connections in 
the control group were limited to VMPFC and ventral 
striatum regions. In the MMT group, only VMPFC had 

this self-inhibitory effect, while in the ABT group, all re-
gions had the self-inhibitory effect. In the control group, 
DLPFC affected the connection of ventral striatum to 
VMPFC, and ventral striatum itself affected the connec-
tion of amygdala to DLPFC. In the ABT group, VMPFC 
influenced reciprocal connections between DLPFC and 
ventral striatum and also the connections between ven-
tral striatum and amygdala. In the MMT group, the non-
linear link was from VMPFC to the link from DLPFC to 
ventral striatum.

4. Discussion

There are studies addressing the results of various treat-
ment methods on drug abusers, but there is no conclusive 
evidence for superiority of any treatment method over oth-
ers (Wang, et al., 2011). In addition, studies have shown 

Figure 3. Depicting the region-based activation analysis results for three study groups; (a) ABT, (b) MMT, and (c) Control. The 
blue regions are the ROIs in which the activations were investigated and the red regions are the active parts during the task 
and specifically the craving>neutral contrast.
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Table 3. The group level activation results in (Craving>Neutral) contrast for MMT group.

Anatomical Regions Cluster Size Z-Values Local Maximum Co-Ordinates

Visual cortex

1426

3.8 20 -64 14

Lingual gyrus 3.6 0 -80 22

Lingual gyrus 3.56 2 -80 26

Cuneus 3.45 22 -64 2

Retrosplenial cortex 3.42 -10 -78 14

Cuneus 3.42 -16 -70 0

Insula

718

3.65 -48 -20 2

Inferior parietal lobule 3.57 -60 -38 20

Inferior parietal lobule 3.53 -50 -36 14

Inferior parietal lobule 3.43 -54 -34 12

Inferior parietal lobule 3.23 -60 -36 10

Insula 3.17 -38 -30 8

Primary somatosensory cortex

454

3.43 16 -46 56

Primary somatosensory cortex 3.4 18 -46 60

Superior parietal lobule 3.23 16 -46 52

Superior parietal lobule 3.23 24 -46 68

Superior parietal lobule 3.13 12 -50 68

Postcentral gyrus 3.06 12 -46 68

Secondary somatosensory cortex

263

3.44 50 -10 24

Secondary somatosensory cortex 3.25 58 -2 12

Primary somatosensory cortex 3.21 56 -6 22

Secondary somatosensory cortex 3.08 60 0 4

Secondary somatosensory cortex 2.87 58 -12 12

Secondary somatosensory cortex 2.85 64 -14 10

Heschl’s gyrus

262

3.3 56 -28 14

Inferior parietal lobule 3.19 56 -38 12

Inferior parietal lobule 3.18 58 -48 10

Heschl’s gyrus 3.12 60 -28 16

Superior temporal gyrus 2.96 60 -36 6

Inferior parietal lobule 2.91 46 -42 12
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different brain activation patterns for treated subjects, how-
ever, currently there is no direct study of brain effective 
connectivity differences between variously treated sub-
jects. The effective connectivity estimation can measure 
the regulatory effects of regions and craving cues on the 
different parts of the brain network and helps in better un-
derstanding of the craving mechanism (Kober, et al., 2010). 

We investigated the effective connectivity network 
in 3 groups. Two groups included successfully treated 
drug abusers, with different treatment methods; one with 
MMT and the other with ABT. The third group included 
individuals with no history of drug abuse. The results 
of the last group helped us provide a basic network for 
brain effective connectivity pattern, when no prior bias 
exist. The networks were estimated between 4 regions 
of interest which were mentioned in previous studies. 

Studies have indicated that cue exposure increases crav-
ing and results in more activities in these regions. These 
regions are also associated with emotion. 

The implication of prefrontal regions in cognitive con-
trol (Wrase, et al., 2007; de Greck, et al., 2009) and its reg-
ulatory effect on emotion specific regions like amygdala 
and ventral striatum have been already proven (Franklin, 
et al., 2007; Meda et al., 2009). The resulted networks 
showed the active role of these regions in the network and 
by using DCM, the difference of the networks between 
these 3 groups were depicted numerically and structurally.

4.1. The craving input effect

The differences between the control group and two 
treated groups indicated that the cue-induced pictures did 

Table 4. The group level activation results in (Craving>Neutral) contrast for the control group.

Anatomical Regions Cluster Size Z-Values Local Maximum Co-Ordinates

Visual cortex

2214

3.97 -12 -58 0

Cuneus 3.94 -12 -46 -6

Visual cortex 3.87 -20 -58 2

Visual cortex 3.82 16 -62 8

Lingual gyrus 3.78 6 -64 2

Visual cortex 3.69 -8 -92 8

Inferior parietal lobule

705

4.19 -46 -34 26

Insula 3.51 -30 -36 12

Secondary somatosensory cortex 3.5 -40 -30 26

Insula 3.35 -34 -32 14

Insula 3.26 -48 -12 22

Primary somatosensory cortex 3.23 -16 -34 50

Supramarginal gyrus

649

3.98 50 -38 10

Middle temporal gyrus 3.51 54 -42 2

Inferior parietal lobule 3.45 58 -36 12

Insula 3.37 40 -24 10

Inferior parietal lobule 3.35 62 -32 18

Middle Temporal gyrus 3.24 64 -36 2

Cingulate gyrus

275

3.19 -10 -4 36

Primary motor cortex 2.71 -32 -16 36

Primary motor cortex 2.58 -26 -16 46

Inferior parietal lobule

230

3.82 -64 -44 14

Inferior parietal lobule 3.56 -48 -42 10

Inferior parietal lobule 3.09 -54 -46 22

Inferior parietal lobule 2.81 -62 -36 12
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not affect the emotion of healthy subjects, but affected 
amygdala, causing emotional indices in the other groups. 
To the healthy subjects, these pictures seem as neutral 
pictures and only modulate some of the links in the net-
work (as perturbations for the task). This finding is in 
accordance with previous studies which mentioned the 
role of amygdala in cue-induced tasks in subjects with 
a history of drug abuse (Bechara, et al., 1999; Bechara, 
et al., 2003; Goudriaan, et al., 2010; Chase, et al., 2011; 
Tang et al., 2012; Ray, et al., 2015). 

4.2. The modulatory effect of ventromedial pre-
frontal cortex 

Studies have already proven the role of prefrontal-stri-
atal pathway in the control of craving to drug use (Koob, 
2001; Volkow, Fowler, Wang, 2003; Everitt & Robbins, 
2005). The lack of control over drug taking is considered 
a sign of addiction and is critical in relapse. Frontal brain 
regions have an important role in inhibitory control of 
this behavior. It has been shown that VMPFC has modu-
latory effects on other regions, including amygdale and 
ventral striatum in the cue-induced craving tasks (Becha-

Figure 4. The DCM network structure for three groups; (a) the final network for ABT group, (b) The final network for MMT 
group, and (c) The final network for the control group.

Craving

Craving

VMPFC

VMPFC

VMPFC

AM

AM

AM

DLPFC

DLPFC

DLPFC

VS

(a)

(b)

(c)

VS
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Craving
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Table 5. The BMA results. The links with zero strength in the table were not significant in their own groups. The last three 
columns of the table compare between groups with the P-values used in the test. In these columns “ns” means not significant.

Control ABT MMT Significance

 Mean Strength Mean Strength Mean Strength Control-
ABT

Control-
MMT ABT-MMT

Endogenous Connections

VMPFC to VMPFC -0.1 -0.2 -0.1 ns ns ns

DLPFC to DLPFC 0 -0.8 0 P<0.01 ns P<0.01

VS to VS -0.1 -0.1 0 ns P<0.05 P<0.05

AM to AM 0 -0.1 0 P<0.05 ns P<0.05

VMPFC to DLPFC 0.2 0.2 0.1 ns ns ns

DLPFC to VMPFC 0.2 0.8 0.1 P<0.01 ns P<0.01

VMPFC to VS 0.4 0.3 0.2 P<0.05 P<0.05 ns

VS to VMPFC 0.1 0.1 0.1 ns ns ns

VMPFC to AM 0.3 0.5 0.2 P<0.05 ns P<0.05

AM to VMPFC 0.2 0 0.2 P<0.05 ns P<0.05

DLPFC to VS 0.3 -0.4 0.1 P<0.01 P<0.01 P<0.01

VS to DLPFC 0 0.2 0.1 P<0.05 P<0.05 ns

DLPFC to AM 0.1 0.6 0.1 P<0.01 ns P<0.01

AM to DLPFC 0.1 -0.2 0 P<0.01 P<0.05 P<0.01

VS to AM 0 0.2 0.1 P<0.05 P<0.05 ns

AM to VS 0.2 0.2 0.3 ns ns ns

Craving Input

AM 0 0.7 0.1 P<0.01 P<0.05 P<0.05

Craving Modulation

VMPFC to VS 0.1 0 0 P<0.05 P<0.05 ns

VS to VMPFC 0.1 0 0 P<0.05 P<0.05 ns

VMPFC to AM 0.2 0 0 P<0.05 P<0.05 ns

DLPFC to VS -0.3 0 0 P<0.05 P<0.05 ns

DLPFC to AM 0.1 0 0 P<0.05 P<0.05 ns

AM to DLPFC 0.1 0 0 P<0.05 P<0.05 ns

Nonlinear Connections

VMPFC to DLPFC-VS 0 -0.1 0.1 P<0.05 ns P<0.01

VMPFC to VS-DLPFC 0 0.4 0 P<0.01 ns P<0.01

VMPFC to VS-AM 0 0.2 0 ns ns ns

VMPFC to AM-VS 0 -0.2 0 P<0.01 ns P<0.01

DLPFC to VS-VMPFC -0.2 0 0 P<0.01 P<0.01 ns

VS to AM-DLPFC -0.2 0 0 P<0.01 P<0.01 ns
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ra, et al., 1999; Bechara 2005; Lu, et al., 2012; Sladky, 
et al., 2013). In our study by considering the modulatory 
effect of VMPFC on other interregional connections, it 
was revealed that in healthy subjects there was no mod-
ulatory effects, as they did not have any emotional re-
sponses to craving specific pictures. 

However, the VMPFC modulatory effects in ABT group 
indicate the important role of this region in drug resistance 
among these subjects. This group are trained to resist drug 
taking and the results reveal that the VMPFC acts as a part 
of top neural system, which tries to control the emotional 
decisions. This finding is in accordance with the findings 
of prior studies on the regulation of negative emotions 
(Ochsner & Gross, 2008) and positive emotions (Kim 
and Hamann, 2007; Delgado, Gillis, Phelps, 2008). They 
reported the activation of these prefrontal systems and 
suggested the role of cognition to regulate responses to 
affective cues; for example drug cues. In the MMT group, 
we did not expect to observe any modulatory effect as 
the subjects took a dose of methadone and they would 
seem to have normal behavior when encountering cue-
induced images. The only modulatory effect of VMPFC 
in this group was observed in the DLPFC-ventral striatum 
link, which was not statistically different from the control 
group who did not have this link (in the control group this 
link was not statistically significant). 

The importance of DLPFC as a part of prefrontal corti-
cal area has been highlighted in previous addictive-cue 
studies (Goldstein & Volkow, 2002; Wilson et al., 2004; 
Goldstein, et al., 2007; Volkow, Fowler, Wang, Baler, & 
Telang, 2009). The neural activity of DLPFC may be 
modulated by sensory information, motivational state, 
and task contingencies (Miller, 2000). In our study, DLP-
FC exhibited an important role in regulatory processing 
of cognitive and motivationally relevant information.

In this study, we identified 3 effective connectivity net-
works for 3 different groups, with various structures and 
links strength. These results can prove the different ef-
fects of treatment methods and their underlying neuro-
nal mechanisms. The vast modulatory effect of VMPFC 
occur only in ABT group. This effect can prove the in-
hibitory role of this brain region in drug craving and also 
indicate the successful treatment of the subjects in this 
group, as the main target of this treatment is to train the 
patients to control their craving. The modulatory effect of 
VMPFC in MMT group, in contrast with the other treat-
ment group, is a single effect which can exist because of 
the anatomical connections between these regions.

In the control group, the input data did not directly af-
fect the regions and only modulates the links. In this net-
work, input is on when the craving images are shown 
and is off in other situations. Thus, the input can be in-
terpreted as watching craving-related images and this 
exclusive modulatory effect can be the result of subjects’ 
inattentiveness to these cues. These results cannot prove 
the superiority of one method over another but at least 
may help choose the best method for different subjects 
in various situations.
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