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Aβ (40–42) oligomers will result in cholinergic dysfunction 
and mild cognitive impairment in the first stage of the dis-
ease (Walsh & Selkoe, 2004), in later stages, it advances to 
Aβ plaque deposition, neurofibrillary tangle accumulation, 
chronic inflammation, neurodegeneration, and consequent 
severe dementia (Blennow, de Leon, & Zetterberg, 2006).

Aβ is a 39 to 43 amino acid peptide and a major component 
in the neuritic plaques of AD (Bond et al., 2003). It is be-
lieved that full-length Aβ peptide is responsible for AD. The 
interesting property of Aβ peptide is its various segments 
(including 1–28, 25–35, and 34–42) which show similar 
biophysical and biochemical properties like full-length Aβ 
(1–42) peptide (Shanmugamo & Lavarapu, 2004). 

Electrophysiological and molecular studies performed in 
animal models of AD have shown that cognitive impair-
ment is related to considerable alterations in the synaptic 
plasticity (Balietti et al., 2012) and synaptic depression in-
duced by accumulation of Aβ (Hsieh et al., 2006). 

In the pathogenesis of AD, intracellular Ca2+ homeostasis 
disturbance plays a central role (Khachaturian, 1994) as its 
increase in intracellular concentration triggers mechanism 
for amyloid plaque formation and neurofibrillary deposi-
tion (Stutzmann, 2007). It was shown that Aβ can disrupt 
neuronal Ca2+ homeostasis and increase ion permeability, 
associated with the formation of artificial ion pores in lipid 
membranes or activation of endogenous ion channels on 
the cell surface (Small et al., 2009). In other words, Aβ can 
modulate ion channels (including the voltage-dependent 
Ca2+ and potassium channels), which reinforces the influx 
of the ion into the cell, forming specific Ca2+ conducting 
pores and modulating the N-methyl-D-aspartate (NMDA) 
and nicotinic receptors (Carafoli & Brini, 2000). 

Electrophysiological studies have documented that neu-
rodegenerative diseases alter long-term potentiation (LTP) 
and long-term depression (LTD) in the hippocampus and 
other regions of the temporal lobe (Kumar, 2011). 

The deficits of cholinergic or noradrenergic systems 
characterizing AD have significant role in the glial ac-
tivation and local inflammatory processes (Carnevale, 
De Simone & Minghetti, 2007). Recently, it was dem-
onstrated that astrocytes provide processing and in-
tegration of the synaptic information as well as con-
trolling synaptic transmission and plasticity (Perea, 
Navarrete, & Araque, 2009). Moreover, astrocytes 
have functional receptors for neurotransmitters and 
response to stimulation through excretion of gliotrans-
mitters (Rossi & Volterra, 2009). 

Despite important advances in medicine and large finan-
cial investments, the neurobiological bases of cognitive im-
pairment in AD and its treatment are not fully understood. 
Therefore, we studied the effect of PRP-1 in a rat model 
of AD induced by Aβ (25-35). PRP-1 was first synthesized 
by Dr. A. A. Galoyan in the Institute of Biochemistry, NAS 
republic of Armenia and kindly provided to us for the study. 
This compound has several biological effects on immune 
and nervous system, including protective effects on neuro-
degenerative processes (Galoyan et al., 2010). In the present 
study, we used a new mathematical program with the pos-
sibility of averaging the entire mass of experimental data. 

2. Methods

Experiments were carried out on 24 adult male Albino rats 
(230±30 g body weight). The animals were randomly di-
vided into 3 groups; control (3 μL normal saline, ICV injec-
tion), Aβ (Аβ [25-35] 3 μL 10 М solution, ICV injection), 
and Aβ plus PRP-1 (0.1 mg/kg PRP-1, IP, every day since 
the next day after injection of Aβ, for 3 weeks).

All the processes were accomplished by the “Principles of 
Laboratory Animal Care” (NIH publication No. 85-23, revised 
1985), as well as the specific rules provided by the Animal Care 
and Use Committee of National Medical and Health Service.

During acute phase of experiments, the animals were im-
mobilized by 1% dithylinum (25 mg/kg, IP) and under ar-
tificial ventilation the spinal cord (SC) at T1-T3 level (with 
ultrasound scalpel) was dissected to achieve encephale 
isole. After removing skin of cranium, the trepanation 
of skull was performed from bregma, until lambda and 
dura mater was removed. This procedure was done on the 
stereotaxic apparatus. Stereotaxic (stereotaxic apparatus 
СЭЖ-1 made in the experimental workshop of the Insti-
tute of Physiology, Ukrainian Academy of Sciences) ori-
entated glass electrodes of 1-2 µM tip diameter were filled 
with 2 M NaCl and inserted into hippocampal (HP) fields 
of CA1, CA3 for recording single-neuron spikes flow ac-
tivity evoked by high frequency stimulation (HFS) of ipsi-
lateral entorhinal cortex (EC) (rectangle current pulses of 
0.05 ms, 0.08-0.16 mA, and frequency of 50 Hz, during 1 
second). Later, recordings were performed 12 weeks after 
bilateral ICV injection of normal saline into control group, 
and 12 weeks after bilateral ICV injection of Аβ (25-35) 
(3 μL of 10 М solution) into Аβ group. Also, recordings 
were performed 12 weeks after bilateral ICV injection of 
Аβ with systemic use of PRP-1 (0.1 mg/kg IP, every day 
since next post operation day for 3 weeks).

Stimulating and recording electrodes were put according 
to the stereotaxic coordinates of the rat atlas (Paxinos & 
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Watson, 2005), EC (AP -10.0, L ±3.5, DV +4.0 mm), HP 
(AP -3.5; L ±3.5; DV +2.8-4.0 mm). Post stimulus activity 
was revealed as tetanic potentiation (TP) and tetanic depres-
sion (TD) followed by post tetanic potentiation (PTP) and 
post tetanic depression (PTD). After recording, the pulse 
flows were analyzed by a special mathematical program be-
fore and after stimulation, for getting “raster” of single-neu-
ron prestimulus and poststimulus spike flows in real time.

Then, basis on the number of prestimulus histograms of 
sum spikes, raster, and frequency histograms were arranged. 
By means of selected comparable groups of neuronal spik-
ing, the similar complex averaged pre-stimulus histograms 
and frequency histograms were constructed. This computer 
program allows the separation of stimuli, superposed on 
action potentials (AP) during their close succession in the 
process of TP and TD and avoids traditional complex intra-
cellular recording approach of long-term TP and TD.

To determine the statistical significance of differences 
during inter spike intervals as well as before and after the 
stimulus, we used nonparametric criterion, 2-sample Mann-
Whitney U test for the testing of 2 independent samples. 
Since the number of recorded spikes was over than several 
hundred spikes within 10 seconds after stimulation, we 
used a variant of this test, taking into account its asymptotic 
normality, i.e. Z-test. Comparison of critical values with the 
tabulated values of the normal distribution at significant 
levels of 0.05, 0.01, and 0.001 (for different trials), showed 
that as a result of HFS for most samples of neuronal ac-
tivity, spiking had a statistically significant change with a 
minimum significance of 0.05.  

3. Results

The study on impulse activity flow of single hippo-
campal neurons evoked by HFS (50 Hz) of EC during 1 

Figure 1. A, B. Prestimulus histograms of sum spikes (from above), constructed rasters of pre stimulus and poststimulus excit-
atory - TP (A) and depressor - TD (B) effects of single neurons of hippocampus to HFS (50 Hz) of EC during 1 second in the real 
time (10 seconds before and after) stimulation, 12 weeks after injection of normal saline in control group. 
Bottom diagram of neurons spikes summarized frequency, presented in the raster and in the real time, indicating average digi-
tal values of 10 seconds before excitation (MBE) and 10 seconds after excitation (MPE) and during 1 second of tetanic time (MTT).
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second was carried out in Wistar rats in the control, Aβ, 
and Aβ plus PRP-1 groups. In general, we recorded 94 
neurons, which are shown in the following 3 Figures.

The results of following 3 Figures were demonstrated by 
pre-stimulus and frequency histograms of sum spikes, con-
structed raster of prestimulus and poststimulus excitatory TP 
and TD effects, and manifestation of spike activity of single-
neuron of hippocampus to HFS of EC in the real time. 

The flow of single-neuron spikes activity was ana-
lyzed under TP and TD recording, with subsequent PTP 
and PTD, caused by HFS of EC. As shown in Figure 1, 
the control group produced TP and TD of hippocampal 
neurons 12 weeks after ICV injection of normal saline 
during stimulation of EC with HFS (50 Hz) (Figure 1. 
A, Figure 1. B). TP almost exceeded 3 times the level of 
background (Figure 1. A), and TD decreased 3.5 times 

lower than of background activity (Figure 1. B). There 
was a correlation between the activity of hippocampal 
neurons before and after excitation.

Aβ group produced TP and TD in hippocampal neu-
rons like that of the control group 12 weeks after ICV in-
jection of Aβ (25-35) during HFS (50 Hz) of EC (Figure 
2. A, B), but the number of spikes was fewer than that of 
the control group. There were no difference between left 
and right sides (before and after excitation) and admin-
istration of PTP (Figure 2. A). TP increased 6.29 times 
before excitation (Figure 2. A), and TD decreased 5.53 
times lower than that before excitation (Figure 2. B).

As shown in Figure 3, in the group receiving amyloid 
with PRP-1 after 12 weeks, electrical activity of hippo-
campal neurons approached near to the activities of the 

Figure 2. A, B. Prestimulus histograms of sum spikes (from above), constructed rasters of pre stimulus and poststimulus ex-
citatory - TP (A) and depressor - TD (B) effects of single neurons of hippocampus to HFS (50 Hz) of EC during 1 second in the 
real time (10 seconds before and after) stimulation, 12 weeks after injection of Aβ (25-35). 
Bottom diagram of neurons spikes summarized frequency, presented in the raster and in the real time, indicating average digi-
tal values of 10 seconds before excitation (MBE) and 10 seconds after excitation (MPE) and during 1 second of tetanic time (MTT).
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