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Figure 4. Percentages of population spikes, AMP, and AUC in Control, Cont+GA100, and AD groups during basal fEPSP and 
LTP recorded from hippocampal DG at 1 hour before and 1, 3, 24, and 48 h after HFS to brain PP. Repeated measure ANOVA, fol-
lowed by HSD post hoc test (n=8). There are no significant differences between control and Cont+GA100 groups (A and B). AMP 
and AUC were reduced significantly in AD group during same times after HFS (*P<0.05, **P<0.01, ***P<0.001 vs. control groups). 
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Figure 3. Percentages of population spikes AUC in different groups during basal fEPSP and LTP recorded from hippocampal 
DG at one hour before and 1, 3, 24, 48 h after HFS to brain PP. Repeated measures 2-way ANOVA, followed by HSD post hoc 
test (n=8). There are no significant differences between control and sham groups (A). AUC was reduced significantly in AD 
group at 1, 3, 24, 48 hours after HFS (*P<0.05, **P<0.01 vs. Sham). AUC was increased significantly in AD+GA groups (B, C, D, 
*P<0.05, **P<0.01, ***P<0.001 vs. AD+Veh).
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to disturbed glucose homeostasis due to increased insulin 
resistance and decreased beta-cell mass (Valizadeh, Eidi, 
Sarkaki, Farbood, & Mortazavi, 2012; Park et al., 2013). 

Although the exact cause of AD remains elusive, mount-
ing evidence continues to support the involvement of 
neuro-inflammation in the development of AD. A study 
showed that the total number of intersection points of 
dendrites and spine density in hippocampal neurons in 
the AD model group decreased compared to the control 
group (Chu et al., 2014; Wan et al., 2014). So, these re-
sults indicate that anti-inflammatory and immunosup-
pressive agents can alleviate the degeneration of dendritic 
spines in hippocampal neurons in rats’ model of AD.

Alzheimer disease (AD) pathology shows neuronal 
damage in special vulnerable brain regions and circuits 
involved in memory and language, namely the hippocam-
pus and cerebral cortex, which appears to be preceded by 
synaptic and neuronal dysfunction. The relevance of syn-
aptic mitochondria synapses are sites of extensive Ca2+ 
fluctuations since synaptic transmission requires high lev-
els of ATP and constant regulation of intracellular Ca2+ 
concentration, enduring synaptic mitochondria vital for 
maintenance of synaptic function and transmission (Fer-
reiro et al., 2012). 

Recent studies in mild cognitive impairment (MCI) and 
late-stage AD patients demonstrated a significant disease-

dependent increase in oxidative markers localized main-
ly in the synapses. Interestingly, the levels of oxidative 
markers suggest the involvement of oxidative stress in 
AD-related synaptic loss ( Ansari & Scheff, 2011)

Previous studies revealed that GA has anti-inflammatory 
and antioxidative effects to improve brain trauma after ce-
rebral ischemia and traumatic brain injury. Current find-
ings are consistent with previous studies (Mansouri et 
al., 2013; Korani et al., 2014; Naghizadeh & Mansouri, 
2014). In AD, synaptic dysfunction and loss of synapses 
are probably due to defects in synaptic mitochondria, 
which leads to alterations in cognitive function (Ansari & 
Scheff, 2011), and interestingly, this seems to be related 
to reactive oxygen species (ROS) production and altered 
Ca2+ dynamics at the synapse (Kang et al., 2011; Guo, 
Guan, Huang, Wang, & Shi, 2013). 

In mouse hippocampal neurons, Aβ was demonstrated 
to impair mitochondrial movements, reduce mitochon-
drial length, and cause synaptic degeneration (Calkins 
& Reddy, 2011). Compared to nonsynaptic mitochon-
dria, synaptic mitochondria showed a greater degree of 
age-dependent accumulation of Aβ and mitochondrial al-
terations. The fact that synaptic mitochondria, especially 
Aβ-rich synaptic mitochondria, are more susceptible to 
Aβ-induced damage in AD. Indeed, synaptic mitochon-
dria are more sensitive to ROS than nonsynaptic mito-
chondria (Ferreiro et al., 2012). 
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Figure 5. Aβ plaques in CA1 region of hippocampus (H) (×40). A) control group, B) AD group, C) AD+ GA 50, D) AD+GA100,  
E) AD+GA200, F) AD+Veh (modified Bielschowsky staining). Arrows indicate the present level of AD plaques in CA1 area.
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Aβ is a potent neurotoxic peptide and has a pivotal role 
in cognitive deficit and reduced synaptic plasticity in AD. 
Administration of Aβ1-42 drastically attenuated the LTP of 
DG neurons (Babri et al., 2014). In the current work, it 
was appeared the hippocampal LTP properties were de-
cayed after AD induced by Aβ, which is consistent with 
some findings by other investigators indicating that Aβ 
can disrupt excitatory glutamatergic synaptic function at 
synaptic level by acute depression of basal glutamatergic 
synaptic transmission through both presynaptic and post-
synaptic dysfunction (Yao, Zou, Sun, & Ren, 2013). 

In AD, synapses are the primary sites of Ca2+ deregula-
tion due to over activation of glutamate receptors. These 
receptors are concentrated on postsynaptic spines of 
neuronal dendrites where particularly subjected to high 
levels of Ca2+ influx, oxidative stress, and ATP demand 
(Dalton, Wu, Wang, Floresco, & Phillips 2012). In fact, 
Ca2+ influx through NMDA receptors (NMDARs) in-
duced by synaptic activity is required for many types of 
synaptic plasticity and underlies some forms of learning 
and memory. Thus, glutamate receptors are likely sites at 
which neurodegenerative processes are initiated in aging 
and early AD, playing an important role in decreased syn-
aptic function (Gholamipour-Badie, Naderi, Khodagholi, 
Shaerzadeh, & Motamedi, 2013). 

In previous studies we have shown that oral administra-
tion of different doses of GA after induction of animal 
models of neurodegenerative diseases such as PD and 
cerebral ischemia improved the cognitive behavior and 
brain electrophysiology deficits through changes in the 
pro -and anti- inflammatory cytokines levels, brain ede-
ma, antioxidative effects in brain tissue as well as improv-
ing the blood brain barrier permeability (Farbood et al., 
2015; Mansouri et al., 2013). These findings consistent 
with other investigations showed the potential therapeu-
tic effect of antioxidants to protect neurons against Aβ-
induced cell death and lipid peroxidation. These natural 
antioxidants have been found to improve cognitive func-
tion in aged rats and prevent learning and memory deficits 
following brain injury (Mansouri et al., 2014; Farbood et 
al., 2015). Clinical studies have also described positive ef-
fects of antioxidant treatments in AD, and treatment with 
antioxidants has been reported to slow the progression of 
AD (McDaid et al., 2005; Scuderi et al., 2014).

Various pharmacological activities of GA such as anti-
cancer (Yang et al., 2006) and antioxidant function (Yang 
et al., 2006) have been reported. This compound has also 
been described as an excellent free radical scavenger (Isu-
zugawa, Inoue, & Ogihara, 2001). Several line of studies 
demonstrated that administration of GA could improve 

the cognitive deficits after cerebral damages in rats. Cog-
nitive enhancing and neuroprotective effect of GA are as-
sociated with the antioxidant of this compound (Korani 
et al., 2014). 

GA effectively decreased the brain level of the ROS, in-
dicating that GA exerts antioxidative activity partially by 
modulating brain dysfunctions (Sun et al., 2014a). 

Ki-Yeon Yoo and his colleagues (2010) reported that oral 
administration of epigallocatechin-3-gallate (EGCG), a 
major catechin of green tea can promote cell proliferation, 
neuronal fates, neuroblast differentiation and maturation 
of neurons in the hippocampal dentate gyrus. It has also 
been reported that the chronic administration of EGCG 
improves learning ability in rats and mice. In addition, 
when mouse hippocampal slices were pretreated with 
EGCG for 1 hour prior to experiment, the level of high-
frequency stimulation-evoked LTP increased significantly 
during synaptic transmission between the hippocampal 
regions. These results suggested that oral administration 
of EGCG can enhance cell proliferation and increase the 
number of neuroblasts in mice hippocampal dentate gyrus 
(Yoo et al., 2010). Our finding in the current work showed 
that treatment of AD rats with GA improves brain electri-
cal activity, which is consistent with the previous results. 

In this study, we found no significant difference in 
evoked field potentials between sham operated and sham 
group received GA for the same manner. This study re-
vealed that GA improves only the synaptic failure induced 
by Aβ peptide and can be introduced as a promising mul-
tipotent pharmacological agent in the prevention or treat-
ment of AD in the future.

Our finding showed that Aβ disrupted synaptic plasticity 
in hippocampus due to constituent of the senile plaques 
and neuronal apoptosis. Treatment of AD (but not healthy) 
rats with GA improved brain histology and electrophysi-
ology damages as dose dependent. Furthermore, our find-
ings might raise a possibility of therapeutic applications 
of GA for preventing and or treating neurodegenerative 
diseases.
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