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Introduction: Methamphetamine use disorder (MUD) has substantial societal and individual 
implications, necessitating a comprehensive understanding of its neural underpinnings for 
effective intervention. Key to addiction is the amygdala, implicated in emotion processing and 
reward systems, which interacts with the prefrontal cortex in addictive behaviors.

Methods: We conducted a study involving 54 male individuals with MUD (age range: 22–44 
years) to examine amygdala-cortical connectivity during methamphetamine cue reactivity, 
aiming to uncover effective neural pathways. We combined generalized psychophysiological 
interaction (gPPI) analysis and dynamic causal modeling (DCM) to elucidate connectivity 
dynamics and effective neural pathways. We delved deeper into neuro-behavioral connections 
using the Pearson correlation and group factor analysis (GFA).

Results: Our findings revealed increased functional connectivity within the amygdala-posterior 
cingulate cortex (PCC) and amygdala-dorsolateral prefrontal cortex (dlPFC) networks during 
methamphetamine cue reactivity. DCM revealed a neural network characterized by positive 
bidirectional connections among the amygdala, dlPFC, and PCC, along with negative intrinsic 
connections. Interestingly, we observed that the intrinsic self-inhibition of the dlPFC was 
negatively correlated with post-task positive affect, suggesting its role in emotional regulation. 
Nonetheless, utilizing GFA, we did not discover any noteworthy cross-unit latent factors 
between the neural group and variables related to behavior, psychology, or demographics.

Conclusion: These discoveries enrich our comprehension of the neural mechanisms at 
play in methamphetamine cue reactivity and addiction-related processes. The increased 
amygdala-cortical connectivity underscores the role of these networks in drug cue processing, 
potentially contributing to craving and relapse. Effective connectivity analysis highlights the 
interconnectedness of the amygdala, dlPFC, and PCC, revealing potential pathways for neural 
signaling during cue reactivity. Our results contribute to the growing body of knowledge about 
addiction’s neurobiological basis, offering insights that may inform targeted interventions to 
mitigate the impact of methamphetamine cue reactivity on addiction progression.
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1. Introduction

ethamphetamine use disorder (MUD) 
continues to be a substantial public 
health concern, with its profound impact 
on individuals' physical, psychological, 
and social well-being (Courtney & Ray, 
2014; Hedegaard et al., 2018; Paulus 
& Stewart, 2020a). Understanding the 

neural mechanisms that underlie the complex process of 
addiction is paramount for developing targeted interven-
tions and treatment strategies (Paulus & Stewart, 2020b; 
Soleimani et al., 2023; Soleimani et al., 2023). Neuro-
imaging methods, including functional magnetic reso-
nance imaging (fMRI), provide a distinct perspective on 
the complex operations of the addicted brain, offering 
insights into the neural networks and pathways that in-
fluence drug-related behaviors (Ekhtiari et al., 2022; Jan 
et al., 2012; Koob & Volkow, 2016; Parvaz et al., 2011; 
Stewart et al., 2014).

Amygdala, a crucial node in the brain's emotion pro-
cessing and reward systems, plays a central role in the 
addiction process (Everitt et al., 1999; Phelps & LeDoux, 
2005). Its interactions with various cortical regions, par-
ticularly the prefrontal cortex, are instrumental in the 
emergence of addictive behaviors, including craving and 
cue reactivity (Goldstein & Volkow, 2011; Zilverstand et 
al., 2018). Given the amygdala's involvement in process-
ing emotionally salient stimuli and its established rel-
evance to addiction, investigating its connectivity with 
cortical regions during methamphetamine cue exposure 
is of paramount importance (Soleimani et al., 2023).

The present study seeks to address this crucial gap in 
knowledge by utilizing an fMRI approach to explore 
amygdala-cortical connectivity and effective neural 
pathways involved in methamphetamine cue reactiv-
ity. By employing a combination of task-based fMRI 
paradigms and advanced connectivity analyses, we 
aim to shed light on how neural networks interplay in 

Highlights 

● Task-based functional magnetic resonance imaging combined with generalized psychophysiological interactions 
analysis and dynamic causal modeling revealed increased connectivity in the amygdala-dorsolateral prefrontal cortex 
and amygdala-posterior cingulate cortex networks during cue reactivity.

● Dynamic causal modeling identified neural networks with positive amygdala-dorsolateral prefrontal cortex-poste-
rior cingulate cortex connections and negative intrinsic connections, shedding light on complex interactions.

● Intrinsic self-inhibition of the dorsolateral prefrontal cortex negatively correlated with post-task positive affect, 
suggesting its role in emotional regulation.

● Increased amygdala-cortical connectivity emphasizes networks’ role in drug cue processing, with implications for 
craving and relapse.

Plain Language Summary 

Methamphetamine use disorder (MUD) is a serious problem that affects individuals and society. We wanted to under-
stand how the brain is involved in this addiction so that we can help people better. We focused on a part of the brain called 
the amygdala, which is important for emotions and rewards, and how it works with another part called the prefrontal cor-
tex during addiction. We studied 54 men with MUD to see how these brain parts are connected when they are shown cues 
related to methamphetamine. We used brain scans and special analysis techniques and found that when people with MUD 
see cues related to the drug, the amygdala and the prefrontal cortex become more connected. This finding suggests that 
these brain parts work together when the person is exposed to drug-related cues. We also looked at how these brain parts 
communicate with each other. We found connections between the amygdala, prefrontal cortex, and another brain part 
called the posterior cingulate cortex. These connections help the brain process cues related to the drug. We also found that 
the prefrontal cortex can control emotions, essential in addiction. Although we did not find strong connections between 
the brain and behavior, our study helps us understand how the brain is involved in addiction. These findings could help us 
develop better ways to help people with MUD by targeting the brain’s responses to drug cues.

M
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response to methamphetamine cues, providing a more 
comprehensive understanding of addiction's neurobio-
logical underpinnings.

Our primary objective is to investigate the modula-
tion of amygdala-cortical connectivity during metham-
phetamine cue exposure compared to neutral cues. Our 
hypothesis posits that exposure to drug-related cues will 
increase connectivity between the amygdala and regions 
associated with reward processing and cognitive control, 
such as the prefrontal cortex. This investigation will of-
fer valuable insights into the brain's dynamic response 
to cues that trigger drug craving, unraveling the mecha-
nisms that facilitate the transition from cue exposure to 
craving and potential relapse.

Furthermore, this study seeks to delve beyond func-
tional connectivity by exploring effective neural path-
ways using dynamic causal modeling (DCM). This 
modeling enables the investigation of directed interac-
tions between brain regions, shedding light on the neural 
network's causal relationships and information flow. By 
applying DCM to our multimodal fMRI data, we aim 
to uncover the directional influences and effective path-
ways that underlie amygdala-cortical interactions during 
methamphetamine cue reactivity.

In addition to the neural perspectives, this study will 
explore potential correlations between neural connectiv-
ity patterns and psychological variables. We will utilize 
the Pearson correlation and group factor analysis (GFA) 
to elucidate potential neuro-behavioral relationships, 
bridging the gap between brain connectivity and the sub-
jective experiences associated with drug cue reactivity.

In the subsequent sections, we will comprehensively 
overview the research methodology, findings, and im-
plications. This study aims to contribute to the growing 
body of knowledge concerning addiction's neurobiologi-
cal underpinnings by integrating advanced neuroimag-
ing techniques, connectivity analyses, and psychological 
assessments. Ultimately, our findings may pave the way 
for more targeted interventions that address the neural 
circuitry involved in methamphetamine cue reactivity 
and addiction-related processes.

2. Materials and Methods

Study participants

The present study involved 62 male volunteers diag-
nosed with MUD. Thirteen subjects were excluded from 
the study due to non-compliance with the inclusion in-

structions, as revealed in their screening assessments. 
The participants were sourced from addiction treat-
ment centers. The exclusion criteria included current 
or previous comorbid axis I-disorders other than drug 
dependence, as outlined by the diagnostic and statisti-
cal manual of mental disorders, the fourth edition, text 
revision (DSM-IV-TR) (APA, 2000), psychiatric or 
neurological disorders, including head trauma, as well 
as MR-specific exclusion criteria. The inclusion criteria 
stipulated a diagnosis of methamphetamine dependence 
for a minimum of 6 months in accordance with DSM-
IV-TR criteria. Additionally, participants were required 
to self-report and test negative for all drugs (except nico-
tine) in both urine and self-reports for a minimum of one 
week. Participants’ right-handedness was assessed using 
the Edinburgh handedness inventory (Oldfield, 1971), 
and inclusion criteria also specified an age range of 20 
to 45 years. The visual acuity of each participant was 
normal or corrected to normal.

Sixty-two subjects met all the inclusion and exclusion 
criteria. Nevertheless, 8 participants were excluded from 
the data analysis due to excessive head motion during 
scanning. Consequently, the final sample for the analyses 
comprised 54 male participants diagnosed with MUD, 
aged 22 to 44 years (Mean±SD 32.02±5.09). Compre-
hensive behavioral and demographic information about 
methamphetamine users is provided in Table 1.

Experimental procedures

During the screening session, participants diagnosed 
with MUD underwent a series of baseline assessments. 
These assessments encompassed demographic informa-
tion (Ranaei et al., 2022), substance use patterns, mental 
health evaluations, treatment history, and a risky behav-
iors profile. This profile included a history of drug injec-
tion, engagement in high-risk sexual activities, prior in-
carcerations, participation in drug sales, and a record of 
violent altercations. Furthermore, participants complet-
ed the Barratt impulsiveness scales-11 (BIS-11) (Bar-
ratt, 1994) and the depression anxiety stress scales-21 
(DASS-21) (Hosseini et al., 2023; Hosseini & Modar-
resi Chahardehi, 2021; Osman et al., 2012). They also 
underwent a training session to familiarize themselves 
with the drug cue reactivity task before the MRI scan 
day (Figure 1A).

After successful screening, participants underwent a 
single fMRI session. Participants arrived for the MRI 
scans between 8:30 and 10:30 AM on the designated day 
after abstaining from all drugs (except nicotine) for at 
least one week. After participants finished self-assess-
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ments of their current drug craving using a 0–100 visual 
analog scale (VAS) and evaluations of positive and nega-
tive emotional states using the positive and negative af-
fect schedule (PANAS) (Crawford & Henry, 2004), they 
proceeded to engage in the methamphetamine cue-reac-
tivity paradigm within the fMRI scanner. After the scans 
were concluded, the participants were asked to provide 
another round of ratings for their level of drug craving 
and assess their positive and negative emotional states 
(Figure 1A). To reduce the likelihood of post-scanning 
drug use, participants were recommended to stay at the 
imaging center for at least one hour for recovery.

Functional methamphetamine cue reactivity para-
digm

The methamphetamine cue reactivity paradigm was de-
veloped to investigate the brain's functional responses to 
methamphetamine compared to neutral stimuli (Dakhili 
et al., 2022; Ekhtiari et al., 2022; Jafakesh et al., 2022) 
The experiment comprised four runs of the fMRI drug 
cue reactivity task, with intervals of rest blocks featuring 
a fixation point. Each run had four blocks lasting 36 sec-
onds each, and each block contained 24 images. The im-
ages included blank screens, negative cues, methamphet-
amine cues, and neutral cues. The stimuli were displayed 
for 1000 ms, followed by an average inter-stimulus in-

terval of 500 ms. The order of block presentations was 
pseudo-randomized across the four runs, and after each 
block, there was a 12-second inter-block interval. Each 
run lasted approximately 198 s, with 18-s fixation inter-
vals separating the runs. In these fixation periods, a white 
cross was shown on a black background (Figure 1B). 
Before the scanning session, participants received train-
ing to acquaint themselves with the fMRI environment 
and the cue reactivity paradigm. The negative and neutral 
cues were selected from the international affective pic-
ture system database (Lang et al., 1997). In contrast, the 
drug-related cues were sourced from a publicly available 
and validated cue database (Ekhtiari et al., 2020).

MRI data acquisition

We used a SIEMENS 3.0T scanner (MAGNETOM 
Trio, SIEMENS, Germany) with a 64-channel head coil 
to acquire T1 and fMRI sequences. fMRI images were 
obtained from a T2*-weighted gradient-echo echoplanar 
imaging (EPI) sequence. Each volume of functional data 
comprised 40 slices, featuring a repetition time (TR) of 
2200 ms, an echo time (TE) of 30 ms, and a flip angle of 
90°. The field of view (FOV) was configured to 192×192 
mm, and the voxel dimensions were 3×3×3 mm. A total 
of 367 T2*-weighted functional images were obtained in 
an interleaved slice acquisition order.

Table 1. Sample characteristics (n=54)

Variables Mean±SD

Age (y) 32.02±5.09

Education (y) 10.19±2.82

DASS

Depression (0-21) 8.87±5.28

Anxiety (0-21) 7.74±4.47

Stress (0-21) 11.67±5

BIS

Attention impulsiveness score (0-100) 20.19±4.54

Motor impulsiveness score (0-100) 27.31±6.44

Non-planning impulsiveness score (0-100) 28.35±5.65

Drug abuse profile

Age of Meth use onset (y) 24.66±5.67

Duration of Meth abuse (m) 64.8±29.8

Duration of Meth dependence (m) 64.14±30.6

Duration of Meth abstinence (d) 103.1±182.67

Dosage of Meth (g/d) 1.21±1.08

Abbreviations: DASS: Depression anxiety stress scales; BIS: Barratt impulsiveness scale; Meth, Methamphetamine. 
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Furthermore, a structural image was obtained using 
the magnetization-prepared rapid acquisition gradi-
ent echo sequence. This sequence parameters were set 
as follows: TR=1800 ms, TE=3.44 ms, flip angle=7°, 
FOV=256×256 mm, and voxel size=1×1×1 mm.

Functional MRI data preprocessing

The fMRI data was subjected to preprocessing through 
the utilization of the CONN toolbox (version 20.b) 
(Whitfield-Gabrieli & Nieto-Castanon, 2012) in SPM12 
(Wellcome Trust Centre for Neuroimaging, London, 
United Kingdom). The standard preprocessing pipeline 
involved several steps: functional realignment and un-

warp, slice-timing correction, outlier identification, di-
rect segmentation, and normalization into the standard 
Montreal Neurological Institute (MNI) space. Addition-
ally, functional smoothing was applied using an 8 mm 
full-width at half-maximum Gaussian kernel.

Task-based functional brain activity analysis

The preprocessed fMRI data underwent a general lin-
ear model (GLM) analysis. This model was constructed 
by modeling onset times for the methamphetamine, neu-
tral, negative, and blank conditions using a 36-second 
block function. These onset times were convolved with 
a canonical hemodynamic response function to gener-

Figure 1. Study design and methamphetamine cue reactivity task

Meth: Methamphetamine; PANAS: Positive and negative affect schedule. 

Notes: The procedure of the experiment: Initially, participants underwent assessments to evaluate their neuropsychological 
functioning. Subsequently, each participant completed a training task involving methamphetamine cue reactivity. During 
the experimental session, the subjects underwent a magnetic resonance (MR) scan while performing the methamphetamine 
cue-reactivity task. Before and after the MR scan, the participants self-reported ratings for their craving level and positive and 
negative emotional states.

Methamphetamine cue-reactivity task: During the methamphetamine cue-reactivity task, participants were presented with a 
total of 16 blocks, each containing 24 pictures. These blocks consisted of 4 sets with methamphetamine cues, 4 with blank cues, 
4 with negative cues, and 4 with neutral cues. Following each block, there was an inter-block interval lasting 12 seconds. 
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ate the corresponding regressors of interest. Moreover, 
the six individual motion correction parameters were 
included as nuisance regressors in the first-level model.

In each participant's case, contrast images illustrat-
ing the comparison between the methamphetamine and 
neutral conditions were subsequently incorporated into 
second-level one-sample t-test models, all of which were 
executed using SPM12. The individual contrast maps 
were initially thresholded at P<0.05 (uncorrected). On 
the other hand, the whole-brain statistical group maps 
underwent correction for family-wise error (FWE) to ad-
dress multiple comparisons. This correction was accom-
plished using Gaussian random field theory (Nichols 
& Hayasaka, 2003; Worsley et al., 1996). Furthermore, 
Brainnetome atlas parcellation was applied to each sub-
ject's data. This allowed for the estimation of the average 
BOLD signal change across the 246 sub-regions present 
in the atlas. Notably, the specific sub-region of the right 
medial amygdala, identified through the Brainnetome 
atlas-based parcellation of the fMRI data, was chosen 
as the seed region for the ensuing seed-to-whole brain 
generalized psychophysiological interaction (gPPI) 
analysis. This analysis aimed to uncover modulations in 
connectivity influenced by drug cue reactivity. 

Task-based functional brain connectivity analysis 

The task-based functional brain connectivity analysis 
was conducted using the CONN toolbox (version 20.b) 
(Whitfield-Gabrieli & Nieto-Castanon, 2012) integrated 
within SPM12. A seed-to-whole brain approach was 
employed in this analytical framework, utilizing gPPI 
analysis. In this context, the right medial amygdala was 
chosen as the specified seed region. The primary objec-
tive of the PPI analysis was to reveal specific brain re-
gions exhibiting connectivity patterns that demonstrated 
variability based on the psychological context, with a 
specific focus on the differential response to metham-
phetamine stimuli in comparison to neutral stimuli.

At the first level of the gPPI analysis, the psychologi-
cal regressors of interest encompassed the timing of both 
methamphetamine and neutral blocks. These timings 
were convolved with a hemodynamic response function. 
The physiological regressor was then computed using 
the average time series derived from the designated seed 
region, specifically the right medial amygdala, as out-
lined in the Brainnetome mask. The PPI regressors were 
constructed as interaction terms involving psychological 
and physiological regressors. Through this approach, we 
contrasted the PPI regressors, identifying brain regions 
where connectivity with the medial amygdala demon-

strated significant differences between the methamphet-
amine and neutral conditions. These PPI regressors were 
computed for each participant, revealing the voxel-level 
interaction with the seed region while comparing the 
methamphetamine and neutral conditions.

Subsequently, a second-level gPPI analysis was con-
ducted to detect significant clusters. This analysis uti-
lized voxel-wise and cluster-extent thresholds, where 
clusters were deemed active if they exceeded a voxel-
level threshold of uncorrected P<0.001 and a cluster-
size threshold corrected for false discovery rate (FDR) 
at P<0.05. The regions demonstrating the most robust 
PPI connectivity with the amygdala region were subse-
quently selected as regions of interest for the paramet-
ric empirical Bayes (PEB)-DCM analysis. To this end, 
functional regions of interest (ROIs) with 8 mm spheres 
were centered on the peak voxels within the amygdala 
(coordinates: 19, -2, -19), the dlPFC (coordinates: 16, 
34, 44), and the PCC (coordinates: -4, -40, 34). These 
coordinates were derived from our gPPI outcomes con-
cerning cue-reactivity processing.

Task-based dynamic causal modelling 

The analysis of task-based effective brain connectivity 
over the amygdala, dlPFC, and PCC brain regions was 
conducted utilizing the DCM toolbox integrated within 
SPM12. The principal eigenvariate time series were de-
rived from predefined unilateral masks of these regions, 
with adjustments for effects of interest. To explore the 
effective functional connectivity between these regions, 
we employed the bilinear DCM approach (Friston et al., 
2003), incorporating the stochastic option (Daunizeau 
et al., 2012; Friston et al., 2011; Li et al., 2011). A full 
DCM model was constructed, encompassing three com-
ponents: 1) Fixed connections encompass the extrinsic 
forward and backward connections between the amyg-
dala and dlPFC, amygdala and PCC, and dlPFC and 
PCC, as well as intrinsic self-connections within each 
region, 2) Contextual modulation involves the adjust-
ment of intrinsic self-connections influenced by crav-
ing, and 3) exogenous inputs refer to the introduction of 
methamphetamine and neutral stimuli as driving inputs 
into the respective nodes. Bayesian model inversion was 
carried out for each subject, entailing the establishment 
and inversion of this parent DCM model.

In the group-level DCM analysis, we performed a lin-
ear PEB analysis on a fully connected model estimated 
across all participants. By utilizing a post hoc model se-
lection approach that entailed an extensive exploration 
of the model space, we ascertained the network struc-
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ture at the group level. This process involved employing 
Bayesian model reduction to assess nested PEB models. 
Using Bayesian parameter averaging, we estimated the 
probabilities and magnitudes associated with each con-
nectivity parameter. Additionally, we determined the 
magnitudes and effects related to the modulated connec-
tions. We established significant connectivity parameters 
in the current study using a posterior probability thresh-
old of Pp>0.99.

GFA

We applied the GFA method to uncover latent vari-
ables that reveal relationships among distinct variable 
groups while adhering to a sparsity constraint (Klami et 
al., 2015). GFA relies on sparse Bayesian estimation to 
pinpoint latent factors that either expound upon group-
specific variations or outline a robust relationship among 
different groups. In this study, we defined four variable 
groups: 1) Neural measures, 2) Psychologic measures, 
3) Behavioral measures, and 4) Demographic measures. 
For the neural measures, significant effective connectiv-
ity parameters derived from the DCM analysis within 
three identified regions of interest (amygdala, dlPFC, 
PCC) were used as constituents of the neural GFA group. 
Six subscale scores across two self-report questionnaires 
(DASS subscales encompassing depression, anxiety, 
stress, and BIS subscales encapsulating attention, motor, 
and non-planning) were entered as a group for psycho-
logical measures.

In contrast, the behavioral group consisted of mea-
surements taken before and after fMRI, encompassing 
craving intensity and positive and negative scores on the 
PANAS. Finally, demographic measures were represent-
ed by three scores (age, education, and marital status), 
forming a distinct GFA group. To ensure compatibil-
ity with GFA, all variables underwent z-normalization, 
thereby attaining a mean of zero and a variance of one. 
This standardized format aligns with the requirements 
of GFA. We conducted the sparse Bayesian estima-
tion process in ten iterations to mitigate the potential of 
identifying spurious latent factors. Only the factors that 
displayed robustness across all ten replicates of GFA 
were then extracted and deemed suitable for subsequent 
analysis (Ghobadi-Azbari et al., 2022; Peng et al., 2021; 
White et al., 2021).

We utilized the Pearson correlation to assess the bivari-
ate relationships between behavioral and neural variables 
as an additional approach to exploring neurobehavioral 
associations. The GFA and Pearson correlation were 
conducted using the statistical software R. The GFA 

analysis was executed using the ‘gfa’ function within the 
R software, specifically with the R package GFA (Lep-
päaho et al., 2017; Team, 2020).

3. Results

Behavioral data

To investigate the behavioral effect of cue reactivity on 
positive and negative emotional states, as assessed by 
the PANAS scale and craving intensity, we conducted 
a comparative analysis by directly comparing data col-
lected before and after the fMRI session. After the com-
pletion of the fMRI session, participants did not exhibit 
a statistically significant reduction in self-reported crav-
ing intensity (t53=-0.54, P=0.592; Figure 2A), and there 
was no notable increase observed in PANAS-PA scores 
(t53=0.51, P=0.615; Figure 2B) when compared to their 
pre-scanner state. Nevertheless, a substantial and sta-
tistically significant alteration emerged in PANAS-NA 
scores following the cue-reactivity paradigm (t53=-4.37, 
P<0.0001) (Figure 2C).

Functional activity analysis of methamphetamine 
cue reactivity

A whole-brain GLM analysis was performed as a qual-
ity control measure to validate the activation pattern 
linked to methamphetamine cue reactivity. This analy-
sis included methamphetamine and neutral cues as fixed 
regressors, as depicted in Figure 3A. The main effect 
of cue reactivity (methamphetamine > neutral contrast) 
yielded significance in multiple clusters, employing a 
voxel-wise P threshold of P<0.001 and a minimum clus-
ter size of k=40. These clusters included regions in the 
middle orbital gyrus, superior medial gyrus, posterior 
cingulate cortex, caudal lingual gyrus, and cerebellum 
cortex. Furthermore, we presented the brain activation 
findings across the 246 subregions outlined in the human 
Brainnetome atlas, as illustrated in Figure 3B. 

Functional connectivity analysis of methamphet-
amine cue reactivity

We utilized seed-to-whole brain gPPI analysis to pin-
point target regions exhibiting functional connectiv-
ity with the source region, specifically the right medial 
amygdala (coordinates: X=19, y=-2, z=-19; Figure 4A). 
In fact, we examined how this connectivity was modu-
lated by drug cue reactivity during the methamphet-
amine > neutral condition. The gPPI analysis unveiled 
that task-modulated connectivity was statistically sig-
nificant in two clusters. This outcome was determined 
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using a voxel-level threshold of uncorrected P<0.001 
and a cluster-size threshold of FDR-corrected P<0.05, 
as depicted in Figure 4B. These clusters are located in 
the dlPFC (peak at MNI coordinate: -16, 34, 44; 122 
voxels; p-FWE=0.01) and the PCC (peak at MNI co-
ordinate: -4, -40, 34; 90 voxels; p-FWE=0.05) (Figure 
4C and supplementary Table 1). Our results showed 
increased PPI strength within the amygdala-dlPFC and 
amygdala-PCC functional networks during the cue reac-
tivity task in the methamphetamine condition (amygda-
la-dlPFC: 0.042±0.009; amygdala-PCC: 0.035±0.008; 
Mean±SE) compared to the neutral condition (amygda-
la-dlPFC: -0.005±0.011, amygdala-PCC: -0.004±0.009; 
Mean±SE) (Figures 4D and 4E).

Next, we tested for bivariate correlations between be-
havioral effects (self-reported craving and positive and 
negative emotional states) and neural response (amyg-
dala-dlPFC and amygdala-PCC PPI connectivity during 
cue exposure). Therefore, we tested whether individual 
estimated functional connectivity parameters are directly 
associated with behavioral cue-reactivity effects ([post–
pre] craving and [post-pre] positive/negative PANAS). 
Interestingly, behavioral findings did not correlate 
with functional connectivity on amygdala-dlPFC and 
amygdala-PCC connections (Figures 4F and 4-G). For 

example, the individual functional connectivity in the 
amygdala-dlPFC did not correlate with craving inten-
sity (R=0.13; P=0.35; Figure 4F) and negative PANAS 
changes (R=0.12; P=0.41; Figure 4G).

Effective connectivity of methamphetamine cue 
reactivity

Building upon these results, we aimed to examine 
whether the observed changes in functional connectivity 
could be validated through effective connectivity analy-
sis. Our functional connectivity analysis determined 
whether cue reactivity influences forward, backward, or 
bidirectional projections between the amygdala, dlPFC, 
and PCC. For this purpose, we applied dynamic causal 
modeling to the adjusted BOLD time series data origi-
nating from the amygdala, dlPFC, and PCC. Using mod-
el selection, we established a full model for each partici-
pant (Friston et al., 2016). This model encompassed all 
conceivable modulatory inputs from craving on intrinsic 
self-connections and visual stimuli acting as driving in-
puts into the nodes (Figure 5A). 

Regarding the Bayesian model selection (Friston et 
al., 2016) dynamic causal models – and linear models at 
subsequent (between-subject, we determined the model 

Figure 2. Behavioral cue reactivity effects on methamphetamine users

PANAS: Positive and negative affect schedule.

Notes: (A-C) Bar charts that provide a visual representation of the main effects of cue-reactivity on (A) craving intensity, (B) 
positive PANAS scores, and (C) negative PANAS scores before and after the methamphetamine cue-reactivity paradigm. The 
data displayed in the bar charts are presented as Mean±SEM. 
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with the strongest evidence by assessing the data for all 
potential nested PEB models (Figures 5B, 5C and 5D). 
The winning model featured an effective neural network 
characterized by reciprocal positive connections be-
tween the amygdala and dlPFC, amygdala, and PCC, as 
well as dlPFC and PCC. Additionally, it included nega-
tive intrinsic connections within the three nodes (Figure 
5B and Supplementary Table 2).

We tested whether behavioral effects (craving and 
positive and negative emotional states) are mediated by 
estimated significant effective connectivity. Hence, we 
examined whether the individual effective connectivity 
parameters from the winning model were directly corre-
lated with behavioral cue reactivity effects, specifically 
the differences between post- and pre-measurements of 
craving and positive/negative PANAS scores. The cor-
relational analyses unveiled a noteworthy negative as-
sociation (R=-0.28; P=0.041, n=54, the Pearson correla-

tion). This finding suggests that the inhibitory intrinsic 
connection of the dlPFC was predictive of an increase in 
PANAS positive affect values during cue reactivity (Fig-
ure 5E). It is worth noting that behavioral findings did 
not exhibit any correlation with cue reactivity effects on 
other intrinsic and extrinsic connections.

Relationships between neural, psychological, be-
havioral, and demographic variables

The GFA extracted 9 sturdy latent variables (Figure 6), 
collectively accounting for roughly 38.53% of the vari-
ance across variable groups. Notably, no robust cross-
unit latent factors were discerned between the neural, 
psychological, behavioral, and demographic variable 
groups. In simpler terms, the GFA did not reveal any 
meaningful association or alignment between the neu-
ral group and the behavioral, psychological, and demo-
graphic variable groups within the latent variable space.

Figure 3. Whole-brain neural response during the task-based fMRI when comparing the conditions of Meth and neutral stimuli

Abbreviations: Meth: Methamphetamine; Amyg: Amygdala; BG: Basal ganglia; CG: Cingulate gyrus; FuG: Fusiform gyrus; 
Hipp: hippocampus; IFG: Inferior frontal gyrus; IPL: Inferior parietal lobule; INS: Insular gyrus; ITG: Inferior temporal gyrus; 
LOcC: Lateral occipital cortex; MFG: Middle frontal gyrus; MTG: Middle temporal gyrus; MVOcC: Medioventral occipital 
cortex; OrG: Orbital gyrus; PCun: Precuneus; PCL: Paracentral lobule; PhG: Parahippocampal gyrus; PoG: Postcentral gyrus; 
pSTS: Posterior superior temporal sulcus; PrG: Precentral gyrus; SFG: Superior frontal gyrus; SPL: Superior parietal lobule; 
STG: Superior temporal gyrus; Tha: Thalamus.

Notes: Whole-brain activation pattern related to drug craving during the Meth cue-reactivity task and (B) alterations in brain 
activation pattern within Brainnetome (BNA) sub-regions. The data in the bar charts are presented as Mean±SEM. 
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On the contrary, the GFA detected a robust latent fac-
tor that exhibited loadings across units of analysis in 
behavioral, psychological, and demographic domains. 
Nevertheless, the explained mean-variance differed 
at 20.05%, 30.88%, and 4.32% within the behavioral, 
psychological, and demographic variable groups, re-
spectively. Hence, although this latent factor technically 
encompassed loadings across behavioral, psychological, 
and demographic levels of analysis, it was primarily in-
fluenced by the behavioral and psychological variables, 
accounting for most of the explained variance.

4. Discussion

The current study delved into the intricate neural mech-
anisms underlying methamphetamine cue reactivity by 
examining functional and effective connectivity in the 
amygdala-cortical pathways. The research aimed to un-
cover the underlying neural dynamics contributing to 

drug craving and addiction-related processes in individu-
als with MUD (Grodin et al., 2019). Our discussion will 
focus on the implications of the findings, their alignment 
with existing literature, and their potential contributions 
to understanding addiction and informing interventions.

Functional connectivity and methamphetamine 
cue reactivity

The application of seed-to-whole brain gPPI analysis 
offered valuable insights into the functional interactions 
between the amygdala and other brain regions when 
exposed to drug cues. The observed increase in task-
modulated connectivity within the amygdala-dlPFC and 
amygdala-PCC functional networks during metham-
phetamine cue reactivity supports the notion that these 
regions play a pivotal role in processing drug-related 
stimuli. These results are in line with prior research in-
dicating that the dlPFC and PCC play a crucial role in 

Figure 4. Seed-to-whole brain functional connectivity analysis during the task-based fMRI when comparing the conditions of 
Meth and neutral stimuli 

Abbreviations: gPPI: Generalized psychophysiological interaction; Amyg: Amygdala; dlPFC: Dorsolateral prefrontal cortex; 
Meth: Methamphetamine; PCC: Posterior cingulate cortex; EVs: Events; PANAS: Positive and negative affect schedule. 

Notes: The sub-region of the right medial amygdala, as defined in the Brainnetome atlas, was selected as a seed region for 
gPPI analysis. (B) In the Meth > neutral condition, the BOLD signal was derived from the seed region. Clusters demonstrating 
significant interaction are represented in red over a 3D brain (C). (D, E) The mean values, accompanied by error bars, depict the 
connectivity between the amygdala and dlPFC, as well as amygdala and PCC, during the task-based fMRI when comparing 
the conditions of Meth and neutral stimuli. (F, G) Correlations between functional connectivity and behavioral findings. The 
results show no significant relationship between amyg-DLPFC and amyg-PCC with craving and PANAS scores. 

Ghobadi-Azbari., et al. (2025). Dynamic Amygdala Network Coupling in Methamphetamine Cue Reactivity. BCN, 16(Special Issue), 283-298.

http://bcn.iums.ac.ir/


Basic and Clinical

293

2025, Vol 16, Special Issue

cognitive control processes, emotional regulation, and 
cue-induced craving in addiction contexts (Goldstein & 
Volkow, 2002, 2011; Jia et al., 2011; Sinha, 2001). The 
observed heightened connectivity within the amygdala-
dlPFC and amygdala-PCC functional networks during 
methamphetamine cue reactivity tasks supports the en-
gagement of these regions in the processing of drug-
related cues. This engagement potentially contributes to 
the escalation of craving and the risk of relapse, aligning 
with the idea that the amygdala holds a central role in en-
coding emotional significance (Janak & Tye, 2015; Luo 
et al., 2013; Šimić et al., 2021).

Effective neural pathways and methamphetamine 
cue reactivity

Dynamic causal modeling offers a more profound com-
prehension of the effective neural pathways that underlie 
methamphetamine cue reactivity. The established effec-
tive neural network, including reciprocal positive connec-
tions between the amygdala-dlPFC, amygdala-PCC, and 
dlPFC-PCC, aligns with theories highlighting the inter-
play between emotional processing and cognitive control 
systems in addiction. The existence of negative intrinsic 
connections among these nodes further highlights the 
complexity of the neural network involved in processing 
drug cues, potentially reflecting an intricate modulatory 
mechanism to counteract excessive responses to drug cues 

Figure 5. Examining effective connectivity in methamphetamine cue reactivity through dynamic causal modeling

Abbreviations: Meth: Methamphetamine; DCM: dynamic causal modeling; dlPFC: Dorsolateral prefrontal cortex; PCC: Poste-
rior cingulate cortex; PANAS: Positive and negative affect schedule.

Notes: For each subject, the full DCM model was specified and inverted. This model encompassed intrinsic self-connections 
and extrinsic forward and backward connections, with drug and neutral stimuli acting as driving inputs. Additionally, it 
accounted for drug-induced modulation of all intrinsic self-connections. (B) The winning DCM model, determined via post 
hoc Bayesian model selection, is a streamlined version with the most substantial supporting evidence across all subjects. This 
model encompasses the extrinsic forward and backward connections between the amygdala, dlPFC, and PCC. The parameters 
suggest a positive connection strength for extrinsic forward and backward connections while indicating negative self-connec-
tion strength within the amygdala, DLPFC, and PCC. (D) The panel illustrates the posterior probabilities for all the possible 
models. This finding indicates that the winning model had a posterior probability of 0.98, signifying it possessed more substan-
tial evidence than any other model. (E) Correlations between behavioral and neural results revealed that individual parameter 
estimates of intrinsic self-connection on the DLPFC were associated with PANAS-positive emotional state (R=–0.28; P=0.041; 
the Pearson correlation).
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(Rolls, 2019). These results align with existing literature 
emphasizing the coordinated activity between the pre-
frontal cortex, cingulate cortex, and amygdala, mediating 
cue-induced responses and cognitive control (Etkin et al., 
2015; Sotres-Bayon & Quirk, 2010).

Neurobehavioral relationships

The correlation analysis revealed a negative associa-
tion between intrinsic self-inhibition in the dlPFC and 
PANAS-positive emotional state. This finding suggests 
a potential role for dlPFC inhibitory processes in modu-
lating positive affect during methamphetamine cue re-
activity. This finding aligns with theories emphasizing 
the interplay between cognitive control mechanisms and 
emotional regulation in substance use disorders (Lan-
teaume et al., 2007; Ochsner & Gross, 2005; Volkow 
et al., 2016). While this result contributes to our un-
derstanding of the intricate relationship between neural 
connectivity and emotional responses, further research 

is necessary to elucidate the underlying mechanisms and 
potential clinical implications.

In contrast to the robust neural connectivity findings, 
the absence of significant cross-unit latent factors be-
tween the functional connectivity patterns and behavior-
al, psychological, or demographic variables in the GFA 
analysis is intriguing. This outcome might indicate that 
the observed alterations in neural connectivity do not 
have straightforward translations into measurable rela-
tionships with these external factors. This discrepancy 
could be attributed to the multifaceted nature of sub-
stance use disorders, which are influenced by a myriad 
of interacting factors.

Integration with previous research

The present study builds upon a growing body of re-
search that highlights the intricate interplay between 
brain regions in addiction. The observed connectivity 
changes in response to methamphetamine cues resonate 

Figure 6. Exploring the associations among neural, psychological, behavioral, and demographic variables utilizing GFA

Abbreviations: Amyg: Amygdala; dlPFC: dorsolateral prefrontal cortex; PCC: Posterior cingulate cortex; PANAS: Positive and 
negative affect schedule; BIS: Barratt impulsiveness scale; DASS: Depression anxiety stress scales.

Notes: The heatmap illustrates the loading weight of each variable through different colors. The x-axis provides a view of the 
variables included in each group. The y-axis shows the extracted robust group factors and the respective percentage of ex-
plained variance. Group factors marked with asterisks signify at least one loading weight within them, and this weight’s 95% 
credible interval does not include 0.
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with previous studies investigating cue reactivity across 
different substances of abuse. The convergence of find-
ings regarding the involvement of the amygdala, dlPFC, 
and PCC underscores their roles as core components in 
the addiction process, supporting the notion of a broader 
addiction-related neural network.

Clinical implications

Understanding the neural mechanisms underpinning 
methamphetamine cue reactivity holds significant clini-
cal implications. The identified networks and connec-
tions offer potential targets for intervention strategies to 
mitigate craving and prevent relapse. Interventions tar-
geting the amygdala-cortical circuitry could be designed 
to enhance cognitive control (Sadeghi et al., 2023) over 
drug-related cues and emotions, potentially aiding in the 
management of addiction (Soleimani et al., 2023).

5. Conclusion

 In summary, this research enriches our understanding of 
addiction by investigating the amygdala-cortical connec-
tivity and effective neural pathways associated with meth-
amphetamine cue reactivity. Integrating functional and 
effective connectivity analyses and neurobehavioral as-
sessments provides a comprehensive picture of the under-
lying neural dynamics. These findings offer insights into 
the mechanisms driving addiction-related processes and 
potential avenues for targeted interventions. As addiction 
continues to pose a significant public health challenge, 
these insights may pave the way for innovative strategies 
aimed at improving treatment outcomes and reducing the 
burden of addiction on affected individuals and society. 

Limitations and future studies

Although the study offers valuable insights, it is essen-
tial to acknowledge its limitations. The sample consisted 
solely of male participants with MUD, potentially lim-
iting the generalizability of the findings. Future studies 
could include diverse samples and consider the impact 
of gender and other demographic variables. Additional-
ly, the study's cross-sectional nature restricts our capac-
ity to establish causal relationships between functional 
connectivity patterns and addiction-related outcomes. 
Longitudinal studies could shed light on the trajectory of 
neural changes and their predictive value.
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Supplementary Table 1. The results of the task-modulated connectivity obtained from the seed-to-whole brain gPPI analysis 
for two clusters

Seed Cluster Location Cluster 
Size

Peak Coordinate T-value in 
Peak p-FWE p-FDR

P-un-
correct-

edX Y Z

R-mAmyg Left dlPFC 122 -16 +34 +44 4.23 0.0108 0.0105 0.0003

R-mAmyg Left PCC 90 -4 -40 +34 4.86 0.0472 0.0234 0.0013

Abbreviations: dlPFC: Dorsolateral prefrontal cortex; PCC: Posterior cingulate cortex; mAmyg: Medial amygdala; gPPI: Gen-
eralized psychophysiological interaction; FDR: False discovery rate; FWE: Family wise error.

Supplementary Table 2. The results of the DCM-PEB analyses for Meth cue-reactivity paradigm

Parameter* Description Units Expectation Variance Posterior 
Probability

Self-connection on mAmyg None -0.4771 0.0375 1

mAmyg → dlPFC Hz 0.0486 0.024 0.999987

mAmyg → PCC Hz 0.0358 0.0215 0.994482

dlPFC → mAmyg Hz 0.0414 0.0249 0.999385

Self-connection on dlPFC None -0.4245 0.035 1

dlPFC → PCC Hz 0.1401 0.0219 1

PCC → mAmyg Hz 0.0699 0.0312 1

PCC → dlPFC Hz 0.2210 0.03 1

Self-connection on PCC None -0.2476 0.0506 1

Meth on mAmyg self-connection None 0.0053 0.9035 0

Meth on dlPFC self-connection None 0.0365 0.9755 0

Meth on PCC self-connection None 0.0135 0.9778 0

Driving: Meth on mAmyg None 0.0016 0.8875 0

Driving: Meth on dlPFC None 0.0020 0.885 0

Driving: Meth on PCC None -0.0004 0.8329 0

Driving: Neutral on mAmyg None -0.0014 0.8407 0

Driving: Neutral on dlPFC None 0.0014 0.865 0

Driving: Neutral on PCC None 0.0003 0.8898 0

Abbreviations: mAmyg: Medial Amygdala; dlPFC: Dorsolateral Prefrontal Cortex; PCC: Posterior Cingulate Cortex; Meth: 
Methamphetamine.
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