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Introduction: Motor imagination is a dynamic mental state that simulates a similar brain 
mechanism to actual physical movement. This brain mechanism could be traced using 
Electroencephalography (EEG) recording during motor imagination. Nevertheless, it is 
still unclear how development changes this mechanism. As the brain mechanism of motor 
imagination must gain expertise during development to enable a subject to perform better 
motor actions, we hypothesized that the brain mechanism of imagination in adults must have a 
more complex pattern of information processing than in children. 

Methods: We recorded the EEG signals of 10 boys and 9 male adults during right- and left-
hand motor imaginations. Subsequently, the complexity of EEG signals was estimated by 
applying Higuchi’s fractal dimension (HFD) to the cleaned EEG data. 

Results: The results presented a significant increase of HFD in the adults (P<0.05, family-
wised error corrected) in all the EEG channels compared to the children. An increase in HFD 
presents a more complex pattern of information processing in adults, which advances their 
ability to perform motor tasks. 

Conclusion: This advancement in adults could be created by information compression at 
higher levels than in children. We hope these findings pave the way to a better understanding 
brain functions and mechanisms.
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1. Introduction

otor imagery results from brain activi-
ties related to the imagination of a mo-
tor action without actually perform-
ing the movement. It is mainly based 
on the modulation of sensorimotor 

rhythms that could be traced by recording the μ (8–13 
Hz) and β (13–30 Hz) frequency bands of EEG signals 
(Pfurtscheller, 2001b). Studies have shown that imagi-
nation of unilateral hand movement desynchronizes the 
µ rhythm at the contralateral side and synchronizes the 
β rhythm at the ipsilateral side (Pfurtscheller, 2001a). 
Moreover, the brain mechanism of motor imagery has 
been investigated using various techniques, including 
functional connectivity (Ghosh, 2015; Hamedi, 2015; 
Petrovic et al., 2017), power spectral density (Kim et al., 
2018; Zhao, 2013), filter bank common spatial pattern 
(Ang et al., 2012), and fractal dimension (FD) (Aguilar, 
2014; Liu et al., 2017), mainly to find a suitable feature 
for brain-computer interface (BCI) applications. Other 
studies have also shown that the complexities of infor-
mation processing during motor imagination of various 
body parts are different (Phothisonothai & Nakagawa, 
2007; Phothisonothai & Nakagawa, 2007).

Nevertheless, it is still unclear whether motor imagery 
mechanisms change during development. In this study, we 
hypothesized that the brain mechanism of motor imagina-
tion changes during development from childhood to adult-
hood to handle more complex tasks. We aimed to show 
that when children develop, the brain mechanism related 
to motor imagination must also get more complicated. In-

creased EEG complexity is necessary to compress the re-
lated information for more complex tasks. The complexity 
of an electroencephalography (EEG) signal could be esti-
mated by measuring its properties, such as nonlinearity, 
non-stationary, and chaotic behavior (Sheng, 2011). 

The chaotic property of the EEG signal shows that it is 
not random, and its complexity can be estimated by mea-
suring its FD (lEE, 2005). On the other hand, the EEG 
signal’s FD can be estimated in frequency, phase, or time 
domains (Raghavendra, 2010). In this study, we decided 
to calculate the FD of the EEG signal in the time domain 
based on its fractal geometry since it does not require any 
transfer to other spaces and typically takes less running 
time than other domains (Raghavendra, 2010). Fractal 
geometry is a mathematical tool to describe objects in 
space (Figure 1) (WikipedIa, 2025), and it is helpful for 
the analysis of biological data, such as the fractal struc-
ture of the nervous system (Di Ieva et al., 2015). In ad-
dition to structure, biological functions such as EEG and 
electrocardiography (ECG) signals have also presented 
fractal behavior. FD of a time series is a statistical mea-
sure that presents self-similarities over a time interval. 

The FD of a time series signal has a value bigger than 
1 and smaller than 2 (1< FD <2). Various methods can 
be used to calculate the fractal geometry, including Hi-
guchi (Fraga, 2017; Raghavendra, 2010), Katz (Fraga, 
2017; Raghavendra, 2010), and box-counting (Fraga, 
2017; Raghavendra, 2010). The EEG time series used in 
this study comprised short interval trials; therefore, the 
Higuchi method, which accurately estimates the FD in 
short-time intervals, was used (Accardo et al., 1997; Al-

Highlights 

• Higuchi’s fractal dimension (HFD) was used to compare the motor imagination between adults and children.

• There was a significant increase in the HFD of adults in all the EEG channels compared to children.

• Adults’ hand movement imaginations are more complex than those of children.

Plain Language Summary 

Brain mechanism of motor imagery has been investigated using various techniques. it is still unclear whether motor 
imagery mechanisms change during growth. In this study, we hypothesized that the brain mechanism of motor imagi-
nation changes from childhood to adulthood to handle more complex tasks. We recorded the EEG signals of male 
children and male adults during right- and left-hand motor imaginations. Subsequently, the complexity of EEG signals 
was estimated by applying HFD. The results showed a significant increase in the HFD of adults in all the EEG channels 
compared to children. The increased HFD indicates a more complex pattern of information processing in adults, which 
improves their ability to perform complex motor tasks. This confirmed our hypothesis.

M

Mobarezpour., et al. (2025). Information Processing During Motor Imagination in Adults Versus Children. BCN, 16(Special Issue), 323-332.

http://bcn.iums.ac.ir/


Basic and Clinical

325

2025, Vol 16, Special Issue

Nuaimi et al., 2017; Esteller R, 2001; Higuchi, 1988). 
Subsequently, Higuchi’s FD (HFD) of EEG signal was 
statistically compared during the hand-motor imagina-
tion of children and adult groups. Experimental design 
and research methodology are explained in the follow-
ing section. Then, data analysis and HFD comparisons of 
children and adult groups are presented. Subsequently, 
results are demonstrated, and conclusions on the find-
ings are provided. 

2. Materials and Methods

Study participants

This study recorded data for children from ten boys 
aged 8 to 13 years old (Mean±SD: 10.70±1.83) at the 
Institute for Cognitive and Brain Sciences, Shahid Be-
heshti University, Tehran City, Iran. Data for 9 male 
adults was also obtained from dataset 2a of the BCI com-
petition IV (BCI Competition IV, 2025). 

Experimental setup

In this study, the subjects were seated in front of a 42-
inch computer screen, and hand-motor imagery was per-
formed in the following sequence. At the beginning of 
each trial (t=0 s), a short acoustic warning tone was pre-
sented, and a fixation cross appeared on the grey screen 
for 2 seconds. After two seconds (t=2 s), a cue in the 

form of an arrow pointing either to the left or right (cor-
responding to one of the two classes of left-hand or right-
hand motor imagination) appeared and remained on 
the screen for 1 second. Subsequently, a green circular 
surface prompted the subjects 2 seconds to perform the 
desired motor imagery task without providing any feed-
back until the cue disappeared. A short break between 
0.8 and 1.2 seconds was considered the inter-stimuli in-
terval. Three rounds of 64 trials were presented to the 
subjects with 2.5 minutes rest between them. Figure 2 
illustrates the experimental paradigm. 

Data for adults were also recorded in the same para-
digm from 9 adults during four different motor imagery 
tasks, including left hand (class 1), right hand (class 2), 
both feet (class 3), and the tongue (class 4) movement 
imagination. Only the left-hand and the right-hand data 
were used in our study.

Data recording and preprocessing

EEG data recording for children was performed us-
ing 32 Ag/AgCl electrodes with an EEG8 amplifier 
(PsychoLab, Contact Precision Instruments, UK) with a 
sampling frequency of 1024 Hz. Subsequently, a prepro-
cessing pipeline was used to clean the EEG data. The 
preprocessing stages comprised removing linear bias, 
low-pass data filtering (<100 Hz), and re-referencing to 
the average channel. Then, to adopt the BCI competition 
IV study, the sampling rate was adjusted to 250 Hz, and 
the data of the 11 electrodes with common configura-
tions in these two studies were chosen (Figure 3).

After that, EEG trials of 2 seconds were selected from 
the end of each cue. Finally, the average trials for each 
hand motor imagery class were used to compare adults 
and children.

Fractal analysis using Higuchi method

Higuchi’s FD (HFD) was used in this study to compare 
the motor imagination between two groups of adults and 
children. This method is suitable for short-time signals 
(Accardo et al., 1997; Al-Nuaimi et al., 2017; Esteller 
R, 2001; Higuchi, 1988). Since the HFD value depends 
on the window length and overlap size, various window 

Figure 1. The image of the Apollonian gasket showing a spa-
tial geometry with FD=1.3057

Figure 2. Timing scheme of the paradigm
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lengths range from 440 to 600 ms with an overlap of 40 
to 200 ms and an increasing step of 20 ms.

The HFD method converts short-term signals to new 
ones with different window lengths. For example, if a 
signal has N points. The new signals are like Equation 1.

1. 

Sk
m={sm, sm+k, sm+2k,…, sm+ak}

, where k=1, 2,…, kmax, m=1, 2,…, k 

and a=(N-m)/k, which N is the number of the points 
and a rounds toward the floor.

Based on the results of previous studies (Hinrikus et 
al., 2011; Spasic et al., 2005), the maximum delay factor 
kmax=8 was chosen in this study.

The following example presents the forming of the 
time series if k=2 and N=100; then, for this case, those 
are as follows:

S2
1={s1,s3, ss, ..., s99}

S2
2={s2,s4, s6, ..., s100}

Each time series has a geometric length that is calcu-
lated by Equation 2.

2.

Lk
m=

(∑a
i=1| sm+ik)sm+(i-1)k |(N-1)

ak

, which (N-1)/ak is a normalizing factor. Subsequently, 
the mean geometric length for each case is determined 
by Equation 3.

3.

 
L km= 1

k∑ Lk
m 

k

m=1

If L ̅k
□ α k-FD then the short-term signal is a fractal with 

dimension FD. Therefore, the graph of log10L ̅k
□ versus 

log101/k should approximate a straight line with a slope 
equal to FD. This line is determined by a linear least 
squares method. In this study, the average of fractal di-
mensions in all window trials was calculated and noted 
as the HFD of the EEG signal.

Figure 3. Electrodes configuration to compare the signals of 
the adults and children

Figure 4. The log-log plot of Lk versus 1/k for the left-hand imaginary of a child at channel Fz

Notes: A window length of 460 ms and an overlap size of 60 ms leads to a FD of 1.260548 (the graph slope). Lk presents the 
geometric length, and k presents the delay factor.
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3. Results

The HFD of EEG signals was calculated channel-wise 
for all subjects. The HFD was calculated in various win-
dow lengths with similar related overlap sizes (Figure 4). 
Subsequently, a group-wise average of HFDs for differ-
ent window lengths with their related overlap sizes was 
calculated for each channel distinctly (Figure 5). This 
information for left and right hands motor imagery was 
presented separately in Figure 5 with different curves. In 
the end, the average of these HFD graphs for both groups 
was calculated as a result of their HFD curve (Figure 6). 

Finally, to determine whether the difference between 
the two groups is statistically significant, after the Kol-
mogorov-Smirnov test for normality, a two-sample t test 

was performed between HFDs of two groups for each 
channel separately. Significant results (P<0.05) are pre-
sented in Table 1, and topographical mapping of the con-
trast HFDs is presented in Figure 7.

Based on the results, adults have a larger HFD than 
children on hand movement imagination at all elec-
trodes. This means that adults’ imaginations are more 
complex than children’s. This finding suggests that pat-
terns of information coding also develop when the child 
grows. This complexity change gained by learning and 
memory modifications in mind is discussed more in the 
next section.

Figure 5. HFD of EEG related to left- and right-hand motor imagery in adults and children

Notes: Results of various window lengths with similar related overlap sizes have been presented. The red line curves demon-
strate the mid-distance borders between the curves of the two groups.
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Table 1. Statistical differences between the fractal dimensions of EEG related to right- and left-hand motor imagery between 
adults and children (P<0.05)

Channel
T-test Results

Right-hand Imaginary Left-hand Imaginary

FZ 4.17 2.80

FC3 3.65 3.96

FCZ 3.60 3.51

FC4 2.95 2.23

C3 4.48 3.89

CZ 4.02 6.55

C4 3.57 3.22

CP3 4.50 5.78

CPZ 3.67 5.15

CP4 2.93 4.12

PZ 5.27 6.63

Figure 6. The averaged HFD of EEG in various window lengths related to left- and right-hand motor imagery in adults and 
children

Notes: The red line curve demonstrates the mid-distance border between the curves of the two groups.
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4. Discussion

Motor imagination is one of the brain functions traced 
using EEG recording (Pfurtscheller, 2001b). Various 
EEG features could be used to estimate the neural mech-
anism of motor imagination (Ang et al., 2012; Ghosh, 
2015; Hamedi, 2015; Aguilar, 2014; Kim et al., 2018; 
Liu et al., 2017; Petrovic et al., 2017; Zhao, 2013). Nev-
ertheless, the developmental pattern of such a mecha-
nism is still questionable. As it is known, motor move-
ment and imagination expertise are enhanced during 
normal development (Spruijt et al., 2015; Yang, 2015).

Therefore, we hypothesized that the neural mecha-
nism of motor imagery must also be expertized in a way 
that can handle this phenomenon. Such expertise could 

be estimated by measuring the complexity of informa-
tion processing. This study assessed the complexity of 
information processing by measuring the HFD of the 
EEG signals. The EEG signals were recorded from two 
groups of healthy male children and adults during hand 
motor imagination. 

The complexity of the brain functions as a dynamic 
system and has several statistical properties, including 
self-organization, fractal, scale-free, and self-similarity 
(Fingelkurts, 2013). Previous studies have shown that in-
formation processing in the brain is a power-law behav-
ior (Fingelkurts, 2013). Therefore, the FD must present 
an estimate of the complexity of information processing. 
In this study, the Higuchi method was used to estimate 

Figure 7. Topographical mapping of fractal dimensions of EEG related to right and left motor imagery

A) Adults, B) Children, C) Statistically contrast between adults and children
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the FD of EEG signals during the hand motor imagery to 
indicate the complexity of the process. 

Our result showed higher FD of EEG signals dur-
ing the hand motor imagery in adults than in children. 
This finding indicates that adults have more complex 
information processing patterns than children regarding 
hand-motor imagination. 

5. Conclusion

We think of a compensatory mechanism enabling the 
brain to compress enormous amounts of information 
required for a more complex task. This means that the 
complexity of EEG signals increases when the neces-
sary level of information processing increases. Such a 
reorganization could happen to evacuate the excess of 
information entropy and adapt to the new structure. 
We believe such a coexistence of self-organization and 
scale-free behavior improves the learning of motor ac-
tions during development. It should be noted that a more 
complex pattern of information processing does not 
mean a more accurate motor imagination, which could 
be investigated in future studies. Moreover, we showed 
that brain functionality related to hand-motor imagery 
has a scale-free behavior that improves during develop-
ment. However, previous studies have shown that brain 
structure mainly follows a small-world pattern and may 
not follow the scale-free behavior of its functions. Over-
all, it is concluded that adults have a more complex pat-
tern of EEG signals during hand-motor imagination than 
children. This difference is mainly related to the changes 
in the brain functions required for information compres-
sion. We hope these findings can help better understand 
changes in the brain mechanism of hand-motor imagina-
tion during development.
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