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Abstract 

A major challenge today is personalizing the treatment for Major Depressive Disorder (MDD) 

patients in order to make it more efficient. In order to address this issue, we have proposed a novel 

approach based on machine learning models that utilize neural activity flow prior to treatment with 

selective serotonin reuptake inhibitor (SSRI) medication. The electroencephalogram (EEG) signals of 

30 patients were used to calculate the neural activity flow of each patient based on the direct Directed 

Transfer Function (dDTF). Then, based on the area under the curve (AUC) values, 30 important 

connections were identified for delta, theta, alpha, beta, and gamma bands. In order to select the most 

important neural activity flow, these neural activity flows are combined, and forward features, 

mRMR, and Relief-F methods are applied. Lastly, Support vector machines (SVMs), decision tree, 

and random forest models are trained using selected neural activity flows. Results showed that the 

most connections came from F8, Pz, T5, and P4, which are mostly from the frontal and parietal lobes. 

In addition, the SVM model showed 98% accuracy in classification using forward feature selection, 

with most of the neural activity flows selected from alpha and beta. Finally, results indicate that 

patients who responded to treatment differed in their patterns of frontoparietal neural activity flows, 

which implies the Frontoparietal Network is primarily involved in treatment response at alpha and 

beta frequencies. Therefore, the proposed method is capable of accurately detecting responders in 

MDD patients, which can reduce costs for both patients and medical facilities. 

Keywords: Electroencephalogram (EEG), Effective Connectivity, Major Depressive Disorder (MDD), 

Machine learning. 
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Introduction 

Major Depressive Disorder (MDD) is the most commonly diagnosed psychiatric disorder worldwide, 

affecting more than 300 million individuals [1]. Symptoms of MDD include changes in mood, 

interests, pleasure, cognitive functions, and vegetative symptoms. Furthermore, MDD increases the 

risk of developing conditions such as diabetes mellitus, heart disease, and stroke. In addition, MDD 

has also been associated with suicide, representing approximately half of the 800,000 suicides 

worldwide [2]. 

In the present day, several antidepressants that act on neurotransmitter receptors are being used to 

treat depression. Almost all drugs act on two or more neurotransmitter receptors, i.e., two serotonin 

receptors, two noradrenergic receptors, or both. Also, several treatments are being investigated, 

including estrogen replacement therapy, mifepristone (RU-486 or C-1073), as well as antagonists, 

such as corticotropin-releasing factor, neurokinins, and injectable pentapeptides [3], [4]. MDD is a 

highly heterogeneous disorder, which may mean that only a few people find antidepressants effective. 

Several pre-treatment variables have been found to moderate the treatment response, including 

depression severity and neuroticism, older age, less impairment in cognitive control, and 

employment[5], [6]. 

In general, 40% of people suffering from MDD have treatment-resistant depression (TRD) since 

treatment of MDD requires a trial-and-error sequential treatment strategy, and first-line therapies do 

not meet their needs [7]–[9]. Often, MDD patients suffer from delayed treatment response, functional 

impairment, increased suicide risk, and high medical costs due to the inability to predict which 

treatment will work. Consequently, more effective treatment strategies for patients with MDD are 

urgently needed [10]–[12]. 

Due to advances in neuroimaging techniques, biomarkers from neuroimaging studies are important for 

achieving precision medicine for many psychiatric disorders [13]. In recent years, neuroimaging 

studies have been published utilizing a variety of methods, including electroencephalogram (EEG), 

brain volumetric magnetic resonance imaging, functional magnetic resonance imaging, and diffusion 

tensor imaging to identify biomarkers for treatment response to antidepressants [14]. Using the EEGs 

can be an effective and relatively inexpensive method for studying developmental changes in brain-

behavior relationships, and its high temporal resolution makes it particularly useful for examining 

neural activity flow in the nervous system [15], [16]. 

Recently, many studies have focused on the use of EEG to predict how a patient will respond to 

antidepressant medication in order to overcome this problem [17]–[20]. As an example, patients who 

responded to treatment demonstrated improved absolute alpha power at baseline, which can be used 
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as a biomarker to predict treatment response [21]. Also, the interhemispheric neural activity flow in 

the temporal lobe exhibits 99.61% classification capability using only four EEG channels [22]. A 

study conducted by Mumtaz et al. involved extracting time-frequency features from different 

frequency bands of EEG signals and classifying them by using three time-frequency decomposition 

techniques, including wavelet transforms, short-time Fourier transforms, and empirical modes of 

decompositions, in order to predict treatment-outcome for MDD patients. Combining the best features 

from the decomposition methods described above provided a classification accuracy of 91.6% [23]. 

Likewise, Jaworska et al. utilized demographical features in conjunction with EEG data in order to 

improve the classification results [19]. As demonstrated by Salle et al., changes in theta cordance of 

the prefrontal and midline right frontal in the first week of treatment can provide a predictive indicator 

of the response to antidepressants [20]. Additionally, Kautzky et al. used a random forest approach to 

correctly identify 25% of patients with treatment-resistant depression based on clinical variables and 

three polymorphisms [24]. Moreover, Patel et al. predicted an 89% treatment response using various 

biometrics, including demographic information and structural and functional imaging features [25]. 

This paper makes significant contributions to the field of predicting treatment outcomes in MDD 

through the innovative utilization of neural activity flow based on the direct directed transfer function 

(dDTF). Firstly, we demonstrate that neural activity flow features, particularly those derived from the 

dDTF, can serve as accurate predictors of antidepressant response in MDD patients, providing insight 

into differentiating between individuals who positively respond to selective serotonin reuptake 

inhibitors (SSRI) and those who do not. Secondly, our work achieves new state-of-the-art accuracy in 

EEG-based prediction for MDD treatment by incorporating neural activity flow as a feature in 

machine learning models, including Support Vector Machines (SVMs), Linear Discriminant Analysis 

(LDA), Decision Trees (DT), and Random Forests (RF), surpassing existing benchmarks and 

enhancing the potential clinical applicability of our findings. Lastly, our analysis identifies specific 

brain regions and networks that are indicative of treatment failure in MDD, contributing to our 

understanding of the neural underpinnings of treatment outcomes and offering critical insights for the 

development of targeted interventions. In summary, our paper presents a novel and comprehensive 

approach to predicting treatment outcomes in MDD, leveraging neural activity flow and machine 

learning models. Our contributions include the accurate prediction of antidepressant response, 

achieving state-of-the-art accuracy in EEG-based prediction, and identifying specific neural correlates 

of treatment failure, collectively representing a significant step forward in the field and providing 

valuable insights and tools for advancing personalized treatment strategies for individuals with MDD. 
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Materials and Methods 

Dataset 

The EEG signal dataset used in this study was provided by [23]. The data sets included 34 MDD 

patients and 30 healthy individuals. Among the 34 MDD patients, 17 men and 17 women have an 

average age of 40.3 ± 12.9. For the eyes closed condition, only 30 EEG segments, of 19 channels 

each, were available, which are used in this study. MDD patients were diagnosed using DSM-IV 

criteria [26]. An MDD patient was treated for four weeks with Selective Serotonin Reuptake 

Inhibitors (SSRIs) antidepressants. If there is a 50% improvement from pre- to post-treatment, the 

MDD patient is considered a responder; otherwise, the subject is considered a non-responder. As 

shown in Table 1, based on the Beck Depression Inventory, 12 patients responded to treatment, while 

18 patients showed no significant improvement. The above study has been approved by the Human 

Ethics Committee of the Hospital Universitii Sains Malaysia, Kelantan, Malaysia.   

According to the 10-20 electrode placement system, the EEG is recorded for five minutes using a 19-

electrode EEG cap with linked-ear references. Five different brain regions are represented by 

electrodes: the frontal lobe containing Fp1, F3, F7, Fz, Fp2, F4, and F8, the parietal lobe containing 

P3, Pz, and P4, the occipital lobe containing O1 and O2, the left and right temporal lobe containing 

T3, T4, T5, T6 electrodes, and finally the central lobe with C3, C4, and Cz electrodes. 

EEG preprocessing 

In order to prevent erroneous subsequent analysis and ensure that the underlying neuronal activity is 

accurately reflected in the data, the pre-processing steps have been carried out using the EEGLAB 

open-source toolbox. To remove baseline drift, a 1 Hz high-pass filter is first applied. Then, the 

CleanLine open-source plugin is used to remove line noise. Lastly, 3 minutes of data are used for 

further analysis.  

Effective Connectivity 

The concept of effective connectivity or neural activity flow refers to the influence a node has over 

another based on a model of neuronal integration, which identifies neuronal coupling mechanisms 

[27]. Among the first models used to establish causality between two time series is Granger causality, 

which was introduced in economics. As explained by Granger causality, a time series of 𝑋1 causes a 

time series 𝑋2, if knowledge of 𝑋1 helps to makes predictions of  𝑋2 more accurate [28]. A measure of 

brain activity associated with Granger causality is the directed transfer function (DTF). The DTF 

represents a linear combination of causal influences along all causal pathways, direct and indirect, 

beginning at one site and ending at another [29]. In order to distinguish direct from indirect flows, a 
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dDTF is proposed [30]. With the dDTF method, the strength and direction of direct flow of neural 

activity is determined using DTF combined with partial coherence. For the purpose of calculating the 

dDTF, the Source Information Flow Toolbox (SIFT) is used [31], [32]. Through SIFT, each subject's 

EEG data was divided into 18 segments, each lasting 10 seconds. A Multivariate Autoregressive 

(MVAR) model of order 20 was then fitted to the data, satisfying two criteria of stability and 

consistency. This indicates that the model produces data with the same correlation structure as the 

actual EEG data and is stable/stationary. This step is crucial in ensuring the accuracy and reliability of 

subsequent analyses. Following that, dDTF values are calculated for each segment of data across all 

frequency ranges, and since we have 19 electrodes, a matrix with the shape of 19 * 19 * frequency is 

obtained. At the end of the process, the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 

Hz), and gamma (30-45 Hz) bands are extracted.  

To provide an overview of the dDTF method, the EEG signal is first fitted with a multivariate 

autoregressive model (MVAR). Then, to model a k-channel process, X(t) is modeled as follows: 

𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑘(𝑡))    (1) 

This would lead to the following expression for the MVAR model:   

𝑋(𝑡) = ∑

𝑝

𝑗=1

 𝐴(𝑗)𝑋(𝑡 − 𝑗) + 𝐸(𝑡)    (2) 

In the above equation, 𝑋(𝑡) represents the data vector in time 𝑡, 𝐸(𝑡) represents the white noise 

vector, 𝐴(𝑖) represents the model coefficients, and p represents the order of the model. After that, as a 

result of converting the model equation into a frequency domain, we obtain:   

𝑋(𝑓) = 𝐴−1(𝑓)𝐸(𝑓) = 𝐻(𝑓)𝐸(𝑓)    (3) 

In the above equation, X(f) is the input signal, E(f) is white noise, and H(f) matrix is referred to as the 

transfer matrix of the system which f denotes the frequency of the input signal. The DTF can be 

defined as follows in accordance with the transfer function of MVAR: 

𝐷𝑇𝐹𝑗→𝑖
2 (𝑓) =

|𝐻𝑖𝑗(𝑓)|
2

∑𝑘
𝑚=1   |𝐻𝑖𝑚(𝑓)|2

    (4) 

For the dDTF formula, the DTF must be modified with partial coherence, as follows: 

𝑆(𝑓) = 𝐻(𝑓)𝑉𝐻∗(𝑓)    (5) 

𝑝𝐶𝑜ℎ𝑖𝑗
2 (𝑓) =

𝑀𝑖𝑗
2 (𝑓)

𝑀𝑗𝑗(𝑓)𝑀𝑖𝑖(𝑓)
    (6) 
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where 𝑆(𝑓) is power spectra, 𝑉 is the variance of the noise 𝐸(𝑓) and 𝑀𝑖𝑗 is spectral matrix S by 

removing i-th row and j-th column. Finally, dDTF is defined by the given formula: 

𝑑𝐷𝑇𝐹𝑖𝑗(𝑓) = 𝐷𝑇𝐹𝑖𝑗(𝑓)𝑝𝐶𝑜ℎ𝑖𝑗(𝑓)    (7) 

Feature selection 

To select the best features for discriminating between responder and non-responder groups, first one-

seventh of the data was set aside for testing and then LDA was used for calculating the area under a 

curve (AUC) of every neural activity flow in each band. In this study, the AUC has been used since 

the area under the receiver operating characteristic curve (AUC-ROC) is equivalent to the Mann–

Whitney U-statistic [33]. ROC curves are calculated by comparing the model's false-positive rate 

against its true-positive rate across a range of thresholds. AUC-ROC value was obtained based on the 

mean values of all cross-validation sets. The mean AUCs are a valid measure of the model's 

performance in a generalized setting in which the model was trained, given that each of the analyzed 

learners received a unique training set and a unique model-external validation dataset during training. 

Next, the top 30 connections from each band with the highest AUC are selected, then the feature 

selection algorithms are applied. 

This paper uses three feature selection methods. The first is based on the area AUC-ROC. In this 

method, a subset of features is assessed empirically by measuring the prediction accuracy of the 

feature subset selected by our method. In other words, the forward selection is an iterative process in 

which we start without any features in the model. We continue to add new features to our model in 

each iteration, and then we select the subset of features with the highest accuracy out of all the 

others[34]. Second, the minimum-redundancy maximum-relevance (mRMR) algorithm has been used 

to rank features to minimize redundancy while maximizing relevance. The mRMR algorithm uses 

mutual information to compute similarity scores between features and labels of a subset, aiming to 

minimize the average mutual information between two features and to maximize the average mutual 

information between each feature and the specific label [35]–[37]. As for the last method, Relief-F is 

used. In a similar way to k-nearest neighbors, Relief-F assigns weights to each feature based on its 

ability to separate class labels. If the squared Euclidean distance between a feature and its nearest 

instances of the same class is greater than the distance between the two instances of the other class, 

the weight of the feature decreases. Based on Manhattan distance, Relief-F calculates both negative 

and positive weights for each feature [38], [39]. 

Classification 

In artificial intelligence, supervised learning refers to a subcategory of ML, which uses labeled 

datasets to train algorithms that are capable of classifying data or predicting outcomes. Support vector 

machines (SVMs) are supervised learning algorithms used to classify two groups of data. The 
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algorithms draw lines (hyperplanes) to separate groups based on their patterns. An SVM builds a 

learning model that assigns new examples to one group or another. As a result of these functions, 

SVMs are called non-probabilistic binary linear classifiers. This paper also uses a random forest, 

which is composed of many individual decision trees. Trees in the forest generate a class prediction, 

and the class with the most votes determines the class prediction for our model. In addition, the LDA 

classifier is being used to classify two groups using a linear combination of features. 

Statistical analysis 

For the purpose of evaluating each neural activity flow's importance, the AUC value has been 

calculated for each neural activity flow. Afterward, the 30 top connections with the highest value were 

selected. Also, for the evaluation of any machine learning model's performance, we need to test it on 

some unseen data. Based on the model's performance on unseen data, we can say whether our model 

is Under-fitting/Over-fitting/Well generalized. A cross-validation (CV) procedure is used to assess the 

effectiveness of machine learning models; it can also be used to evaluate a model if we have 

insufficient data. For a CV to be performed, a portion of the training data must be kept aside for 

evaluation later. In this paper, for CV, the k-fold method has been used. During k-fold cross-

validation, the original sample is divided into k subsamples of equal size. A single subsample of the k 

subsamples is retained as the validation data for testing the model, while the remaining k-1 

subsamples are used as training data for training the model. In the process of trial and error, it has 

been determined that 7 is the optimal value for k. Further analysis was conducted based on the results 

of the 7-fold CV. 

Overview of the proposed method 

Figure 1 illustrates the proposed method. In the first step, raw EEG data is preprocessed using EEG-

Lab, an open-source toolbox. As part of the preprocessing steps, a high-pass filter with a 1 Hz 

frequency was applied as well as CleanLine noise. Afterward, the signals are then divided into 18 

segments, each lasting 10 seconds. The neural activity flow is calculated from each segment, and a 

matrix of 19-channels * 19-channels * 45-frequency steps is obtained. Then, the delta, theta, alpha, 

beta, and gamma bands are extracted by averaging over the frequency ranges of 1-4 Hz, 4-8 Hz, 8-13 

Hz, 13-30 Hz, and 30-45 Hz. Following this, AUC-ROC forward feature selection, mRMR, and 

Relief-F algorithms are used to find the best features from all frequency bands. Lastly, the selected 

features are used to train SVM, LDA, RF, and DT classifiers. 
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Results 

Topographic maps 

In Figure 2, topographic maps are shown for MDD patients in the five frequency ranges of delta, 

theta, alpha, beta, and gamma. It is clear from this figure that the responder group shows lower delta 

power compared to the non-responder group, whereas the responders show higher beta power. In the 

theta band, the most significant difference is observed in the left temporoparietal lobe, whereas in the 

alpha band, the most significant difference is observed in the central areas. As can be observed in the 

beta band, respondents showed higher power in general, particularly in the left temporal lobe, which 

is also observed in gamma. 

Regional Differences in Responders vs. Non-Responders   

Following the calculation of the neural activity flow matrix for each segment, the average in 

responders and non-responder groups is calculated (Figure 3). Then, based on the dDTF values 

corresponding to each directed connection, the AUC values are calculated for each of them 

independently. Afterward, they're ranked according to their top 30 of AUC values (Table 2 and Figure 

4). To identify the most important regions, Table 4 summarizes each region in terms of frequency. 

According to this table, the frontal lobe has the highest number of neural activity flows, followed by 

the temporal and parietal lobes. As a result, the frontal and parietal lobes are the dominant regions for 

the majority of connections. Moreover, Table 3 which is an overview of all electrodes from the top 30 

bands, shows that most of the connections end in specific regions, particularly in the electrodes F8, 

Pz, T5, and P4. 

Classification Responder based on the neural activity flow 

Table 6 shows the classification results of ML models for each frequency band, as well as a 

combination of features from all bands, consisting of 150 connections (30 connections from each 

band). Clearly, the top 150 features have the highest accuracy, specificity, sensitivity, and F1-measure 

in every model. Following that, the beta and alpha bands yield the highest results. As can be seen, 

most models have a higher specificity than sensitivity, which indicates that the models are more 

capable of correctly identifying patients who will respond to the treatment.  

It is important to note that one of the main problems with ML models is the curse of dimensionality, 

and it basically means that the error becomes larger as the number of features increases. To overcome 

this problem, different feature selection algorithms have been used, including mRMR, Relief-F, and 

forward feature selection algorithms. Based on Table 7, it can be observed that forward feature 

selection achieved the highest accuracy. Figure 5 shows how the highest performance can be obtained 

using only 23 features and that accuracy decreases afterward, and the selected features are shown in 
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Table 5. Thus, forward feature selection based on the ROC-AUC algorithm improved the accuracy of 

classification when using the best subset of features. 

Discussion 

In this study, we demonstrate a ML approach using EEG-derived neural activity flows that accurately 

predicts antidepressant response and provides neuroscientific insights into mechanisms of treatment 

outcomes. Specifically, we extract dDTF effective connectivity biomarkers in MDD patients to 

capture differences between treatment responders and non-responders across brain regions and 

frequencies. Our findings indicate frontoparietal network connectivity at alpha and beta bands 

underlies response failures, aligning with cognitive theories implicating this circuitry. By combining 

dDTF neural activity flow features with SVM classifiers, our model significantly improves predictive 

performance over previous state-of-the-art EEG methods, achieving over 98% accuracy. This 

establishes functional connectivity as an informative biomarker for guiding antidepressant selection 

while elucidating network deficits linked to treatment resistance. 

Based on the findings in Table 3, F8, Pz, T5, and P4 are the most important regions that differ 

between respondents and non-responders. Further, neural activity flows were used to predict treatment 

outcomes, as well as different feature selection algorithms, were applied to improve classification 

results. As a result, by using forward feature selection across all frequency bands, the best accuracy of 

98.52% was achieved by SMV (Table 7). In spite of the fact that SVMs perform better in very high-

dimensional spaces and SVM models have generalizability in practice, the risk of overfitting is lower 

in SVMs. Also, for its parameters, a unique global optimum can be easily determined [40], [41]. 

Additionally, SVM is based on its kernel, and by selecting the appropriate kernel function, any 

complex problem can be resolved, and in this study, the best result is achieved by using the Radial 

Basic Function (RBF). Also, there have recently been some studies that have criticized the 

reproducibility of AI methods because the evaluation methods may be incorrect, and many of them 

may suffer from data leakage or overfitting[42]. As discussed, we have used CV to train the model 

and evaluate it on the entire dataset to overcome these problems. By fitting the model in every step 

and estimating its performance independently in each fold of the CV procedure, we can identify 

problems such as overfitting or selection bias and learn how the model will generalize to an 

independent dataset since they give an almost unbiased performance. Overfitting was also overcome 

by using different feature selection methods. 

As shown in Table 3, which outlines the starting and ending points of the top 30 activity flows across 

all frequency bands, only a few areas have the greatest impact on treatment outcomes. First and 

foremost, the frontal lobe region, especially the F8, is a dominant region for most of the neural 

activity flows. Following that, the parietal (Pz and P4) and temporal (T5) lobes are dominant regions. 

Additionally, the findings indicate that this pattern represents a valuable brain biomarker that could be 
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used to assess the treatment response of MDD patients before they begin their treatments, thereby 

reducing costs and reducing the amount of time spent on patients and medical centers. For example, 

F8 has also been shown to have a high classification capability [43]. Also, it may be possible to 

predict the efficacy of SSRIs by analyzing frontal EEG recordings collected during the first week of 

treatment [44]. 

Table 5 illustrates the SVM-selected features for obtaining the best accuracy. With only 23 features, 

98.5% accuracy has been achieved, and most of the features are selected from beta and alpha bands. 

Further, when each frequency was used separately to predict treatment outcome, beta, and alpha bands 

produced the best results. Whether we use the neural activity flows of each frequency band separately 

or combine all features in all frequency bands, we conclude that the beta and alpha bands are better 

discriminators for predicting a person's response to treatment. 

A flexible and coordinated modulation of cognitive and emotional processes is enabled by the 

frontoparietal network (FPN), composed of lateral prefrontal and posterior parietal cortices [45]. It has 

been shown that the FPN is activated during externally focused attention and goal-oriented task 

performance. A defining characteristic of MDD is the deficiency in concentration, and cognitive 

theories suggest that impaired top-down regulation of aberrant emotional processing perpetuates a 

bias toward negative effects [46]. It has been shown that depression symptoms are associated with 

decreased neural activity flows between the FPN and other parts of the brain [47]. Based on the 

results of this study, it appears that the most significant difference between these two groups can be 

traced to the frontal and parietal lobes (Table 4). Study results supporting our findings suggest that the 

beta frequency of default mode network-FPN might serve as a neural marker for reoccurring 

illness[48], [49]. Further studies have shown that EEG beta power correlates with cortisol secretion 

and attentional processing, as can be seen in Figure 2, where higher beta power is observed in the 

responding group mainly in regions related to FPN. Moreover, Baskarana et al. showed that changes 

in beta asymmetry observed at 2 weeks post-treatment in the responding group may reflect differences 

in arousal induced by antidepressants [50]. Finally, this paper's findings suggest that treatment failure 

results from alpha and beta-frequency frontoparietal networks at the network level. 

Although this simple approach to dDTF analysis enabled the classification of the treatment responses 

with 98% accuracy, it may not allow inference about the neural activity flow of particular frequency 

bands (delta, theta, alpha, beta, gamma, etc.) within the neural system. To ensure a good 

representation of low-amplitude (higher-frequency) rhythms in MVAR modeling, the analysis should 

be done step by step by filtering out high-amplitude (low-frequency) rhythm(s) (by high-pass filter 

with a gentle slope, not steep), and by fitting a separate MVAR model to the filtered signals. 

The proposed model achieved higher accuracy than other studies in predicting antidepressant 

treatment outcomes based on EEG signals by combining neural activity flow and forward feature 
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selection, as shown in Table 8. This indicates that, in addition to showing causality and assisting in 

understanding the main cause of treatment outcomes, it can also improve classification results. Also, 

several limitations should be taken into consideration, including the small number of patients from 

one location that may affect the generalizability of our findings. Moreover, this study used only neural 

activity flow on channels, but future work may calculate neural activity flow on the brain source 

localization or combine different types of features. Also, our paper has only used machine learning 

models. However, with the advancements in deep learning models, it would be beneficial to use them 

in order to improve prediction results.  

Conclusions 

In this study, we investigated a novel method for classifying treatment responses in MDD patients 

based on neural activity flows. By using neural activity flows, altered brain activity can be identified 

that causes TRD. Based on the findings of this study, it was demonstrated that the most important 

neural flows that differ between responders and non-responders are related to the frontal and parietal 

lobes at beta frequency, which suggests that the FPN is mostly involved in treatment response. Also, 

using this kind of neural flow as an input feature in an SVM model and forward feature selection 

alongside, we were able to accurately classify responders and non-responders with an accuracy of 

98%. The results of this study suggest that ML models can be useful in predicting an individual's 

response to antidepressants at the beginning of a treatment program. 
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Figure 1 - An EEG signal is recorded in a 10-20 system and then preprocessed. In the following step, the dDTF matrix for the 
delta, theta, alpha, beta, and gamma frequency bands is calculated. Afterward, several feature selection methods are used 
to select the best neural activity flows. In the final step, the selected features are used to perform classification. 
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Figure 2 - The mean PSD of responders and non-responders in the delta, theta, alpha, beta and gamma bands. 
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Figure 3. The normalized mean neural activity flow values using the dDTF method between MDD patients who responded 
to SSRIs and those who did not respond to the medications in delta, theta, alpha, beta, and gamma bands. 
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Figure 4. Based on AUC values, the top 30 neural activity flows that show differences in propagation between responders 
and nonresponders are illustrated. Nodes represent electors in the 10-20 system, and edges represent AUC values. 
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Figure 5. SVM forward feature selection based. The x-axis indicates the number of features used for classification, and the 
y-axis indicates the model's accuracy. With 23 features, the best accuracy was obtained and since there was no 
improvement in accuracy, the x-axis is restricted to 40 features. 
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Table 1 – Summary of MDD patient clinical characteristics 

Information Responder Non-Responder Total 

Age [years] 40.7 (±13.0) 41.1 (±12.5) 40.3 (±12.9) 

Gender (female/male) 8/8 9/9 17/17 

Pretreatment BDI-II 18.4 (±7. 4) 22.8 (±12.5) 20.6 (±8.6) 

Post-treatment BDI-II 9.1 (±6.3) 22.1 (±3.3) 15.6 (±4.5) 

 

Table 2 - According to the AUC values of responding and non-responding groups, the following are the 30 most significant 
neural activity flows in the delta, theta, alpha, beta and gamma bands. 

Gamma Beta Alpha Theta Delta 

AUC To From AUC To From AUC To From AUC To From AUC To From 

0.753 F8 T5 0.700 F8 T5 0.763 T5 T3 0.752 T5 T3 0.698 T5 T3 

0.733 F8 T3 0.698 F8 T4 0.680 T3 T5 0.739 Pz O1 0.668 Pz O1 

0.716 F8 O1 0.697 F8 T3 0.654 F8 T6 0.708 F8 C3 0.659 Pz O2 

0.711 F8 O2 0.692 F8 C3 0.648 C4 F8 0.703 F8 F3 0.653 T5 P3 

0.705 F8 P3 0.689 O1 T5 0.648 F8 Pz 0.694 F8 F7 0.652 T5 Cz 

0.704 F8 Fp1 0.685 P4 O2 0.647 P4 O2 0.691 Pz F8 0.644 T5 F4 

0.699 P4 O2 0.677 F8 P3 0.646 O1 T3 0.687 Pz Fp2 0.643 F8 F7 

0.697 P4 T5 0.668 T5 T3 0.642 O1 T5 0.686 Cz O1 0.640 P3 T3 

0.691 P4 O1 0.668 F8 O1 0.640 F8 F7 0.672 Pz C3 0.632 T5 Fz 

0.691 Pz O1 0.662 F8 Pz 0.639 Cz O1 0.670 T3 T5 0.627 F8 C3 

0.688 P4 T3 0.658 Pz O1 0.637 F8 F3 0.670 T5 Fp1 0.627 T3 C3 

0.686 Pz T3 0.656 F8 Fp1 0.636 F8 Fp1 0.667 Pz Fz 0.627 Pz P3 

0.676 F8 P4 0.651 F8 O2 0.636 P4 T6 0.666 C4 T4 0.625 F8 P3 

0.674 Pz O2 0.650 Cz F3 0.635 T5 O1 0.663 T5 F4 0.624 F3 F7 

0.672 F8 F3 0.647 Pz C3 0.633 C4 F4 0.655 P3 T3 0.622 O1 T3 

0.671 F8 Pz 0.643 Pz T3 0.630 F4 Fz 0.653 T5 P3 0.622 T5 Fp2 

0.671 T4 O1 0.637 F8 F3 0.628 P4 O1 0.651 Pz T4 0.621 T3 P3 

0.669 P4 Fp1 0.633 Pz O2 0.626 F4 F8 0.648 F8 P3 0.621 T5 F3 

0.665 F8 C3 0.633 Cz Fp2 0.626 F4 C4 0.645 T5 Fp2 0.618 C4 T4 

0.665 F8 F7 0.633 O1 Pz 0.625 C4 Cz 0.645 P4 O1 0.618 F8 O1 

0.665 Pz C3 0.633 F8 P4 0.625 F8 Fp2 0.643 T5 Fz 0.618 Fz F7 

0.662 Pz Fp1 0.629 T5 Pz 0.625 F8 P3 0.640 F8 O1 0.617 T6 T5 

0.662 F4 Fz 0.627 P3 O1 0.624 T5 O2 0.640 Pz T5 0.617 F8 F3 

0.662 Fz Fp1 0.626 F8 Cz 0.623 T6 O2 0.639 Pz Fp1 0.616 T5 T6 

0.661 O2 T3 0.626 F8 Fp2 0.622 Pz P4 0.639 F8 Cz 0.615 F8 T3 

0.659 F7 T6 0.626 F8 T6 0.622 Cz T5 0.639 T5 F8 0.614 Pz T4 

0.659 Pz Fp2 0.624 F8 F7 0.621 F4 Cz 0.639 Pz F4 0.612 T3 T5 

0.659 Cz O2 0.624 T5 P3 0.621 T3 F7 0.637 T5 Cz 0.611 F8 T5 

0.655 Cz T5 0.623 Pz Fp2 0.621 T4 Fp1 0.637 P3 Fz 0.611 T5 Fp1 

0.650 F8 Cz 0.620 P4 Fp1 0.620 T3 Cz 0.636 Pz C4 0.610 T5 C3 
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Table 3 - An overview of electrodes in all frequency bands. On the left side, there are electrode names and the number of 
connections that originated from the electrode, and on the right side, there are electrode names and the number of 
connections from which connections ends. 

Number of connections 

to 

Electrode's 

name 

Number of connections 

from 

Electrode's 

name 

47 F8 16 O1 

26 Pz 15 T3 

24 T5 13 T5 

11 P4 11 O2 

7 Cz 11 Fp1 

7 T3 10 P3 

5 C4 9 C3 

5 F4 8 Cz 

5 O1 8 F7 

4 P3 8 Fp2 

2 Fz 7 F3 

2 T4 6 Fz 

2 T6 5 Pz 

1 F3 5 T4 

1 F7 5 T6 

1 O2 4 F8 

  4 F4 

  3 P4 

  2 C4 
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Table 4-  A summary of all frequency bands' connections. Rows represent the number of connections within each region, 
with C, F, O, P, and T reflecting the central, frontal, occipital, parietal, and temporal lobes of the brain and columns D, T, A, 
B, and G correspond to delta theta, alpha, beta, and gamma respectively. In this table, the From columns show the number 
of connections that originate from the specified region, and the To column shows the number of features that end in the 
specified region. 

To From Region 

Sum G B A T D Sum G B A T D 
C (C3, C4, Cz) 

12 2 2 5 2 1 19 3 3 4 5 4 

Sum G B A T D Sum G B A T D F (Fp1, Fp2, F3, F4, F7, F8, 

Fz) 56 15 15 11 6 9 48 8 8 10 13 9 

Sum G B A T D Sum G B A T D 
O (O1, O2) 

6 1 2 2 0 1 27 8 6 6 4 3 

Sum G B A T D Sum G B A T D 
P (P3, P4, Pz) 

41 11 8 4 13 5 18 3 6 3 2 4 

Sum G B A T D Sum G B A T D 
T (T3, T4, T5, T6) 

35 1 3 8 9 14 38 8 7 7 6 10 

 

 

 

Table 5 - The selected features use the forward feature selection algorithm using the SVM model. The features are neural 
activity flows based on the dDTF method in all frequency bands. 

Band AUC To From 

alpha 0.763 T5 T3 

alpha 0.636 P4 T6 

beta 0.689 O1 T5 

gamma 0.699 P4 O2 

beta 0.700 F8 T5 

delta 0.627 Pz P3 

alpha 0.642 O1 T5 

beta 0.650 Cz F3 

alpha 0.633 C4 F4 

beta 0.627 P3 O1 

alpha 0.646 O1 T3 

delta 0.622 O1 T3 

alpha 0.626 F4 C4 

beta 0.662 F8 Pz 

alpha 0.621 T3 F7 

beta 0.633 F8 P4 

theta 0.666 C4 T4 

beta 0.624 T5 P3 

beta 0.633 Cz Fp2 

delta 0.611 F8 T5 

beta 0.677 F8 P3 

gamma 0.662 F4 Fz 

gamma 0.665 F8 F7 
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Table 6 - A comparison of SVM, LDA, RF, and DT classification results in the delta, theta, alpha, beta, and gamma bands. 

BAND Model Accuracy Specificity Sensitivity F1-Measure 

DELTA 

SVM 
84.81% 

(±7.33) 

87.43% 

(±8.81) 

73.25% 

(±14.16) 

79.04% 

(±10.45) 

LDA 
81.46% 

(±8.65) 

81.43% 

(±6.40) 

69.09% 

(±21.11) 

73.26% 

(±15.38) 

RF 
80.37% 

(±8.00) 

79.87% 

(±8.92) 

66.51% 

(±16.99) 

71.84% 

(±13.49) 

DT 
75.55% 

(±6.26) 

75.51% 

(±9.07) 

59.32% 

(±16.00) 

65.08% 

(±10.36) 

THETA 

SVM 
84.82% 

(±4.22) 

89.34% 

(±9.30) 

71.84% 

(±8.09) 

79.04% 

(±5.55) 

LDA 
81.84% 

(±3.72) 

82.43% 

(±5.79) 

70.87% 

(±11.33) 

75.38% 

(±5.25) 

RF 
82.96% 

(±2.35) 

91.01% 

(±8.50) 

64.88% 

(±8.84) 

74.92% 

(±4.44) 

DT 
74.09% 

(±4.27) 

66.92% 

(±5.71) 

68.19% 

(±9.83) 

67.34% 

(±6.86) 

ALPHA 

SVM 
86.26% 

(±4.42) 

91.87% 

(±7.70) 

73.57% 

(±10.17) 

80.96% 

(±5.82) 

LDA 
78.85% 

(±4.22) 

81.27% 

(±6.95) 

62.32% 

(±7.42) 

70.09% 

(±5.09) 

RF 
87.06% 

(±7.68) 

97.86% 

(±3.49) 

69.66% 

(±18.57) 

79.88% 

(±13.38) 

DT 
77.00% 

(±8.98) 

74.18% 

(±13.12) 

68.78% 

(±10.72) 

70.69% 

(±10.05) 

BETA 

SVM 
87.04% 

(±3.87) 

89.85% 

(±4.77) 

77.38% 

(±8.89) 

82.71% 

(±4.41) 

LDA 
82.96% 

(±6.27) 

84.59% 

(±8.28) 

71.00% 

(±9.57) 

76.94% 

(±8.22) 

RF 
87.04% 

(±6.42) 

92.40% 

(±7.27) 

74.50% 

(±11.03) 

82.14% 

(±8.66) 

DT 
76.24% 

(±4.97) 

74.41% 

(±9.19) 

64.27% 

(±13.12) 

67.77% 

(±7.83) 

GAMMA 

SVM 
77.45% 

(±7.23) 

76.68% 

(±11.79) 

62.40% 

(±12.63) 

68.29% 

(±11.30) 

LDA 
70.40% 

(±6.47) 

67.06% 

(±6.91) 

53.73% 

(±15.17) 

58.21% 

(±11.00) 

RF 
80.81% 

(±8.03) 

80.57% 

(±13.68) 

68.51% 

(±12.38) 

73.49% 

(±11.95) 

DT 
66.64% 

(±5.90) 

60.67% 

(±9.12) 

55.60% 

(±13.74) 

56.38% 

(±8.19) 

TOP150 

SVM 
93.35% 

(±5.96) 

96.43% 

(±6.56) 

87.84% 

(±12.68) 

91.22% 

(±8.33) 

LDA 
82.63% 

(±6.83) 

79.39% 

(±12.33) 

76.29% 

(±12.60) 

77.11% 

(±9.88) 

RF 
88.56% 

(±8.40) 

95.76% 

(±6.71) 

74.81% 

(±16.92) 

83.05% 

(±14.11) 

DT 
80.35% 

(±5.54) 

83.15% 

(±6.85) 

65.15% 

(±9.88) 

72.55% 

(±6.79) 



 

27 
 

Table 7 - A comparison of SVM, LDA, RF, and DT classification results in the delta, theta, alpha, beta, and gamma bands 
using mRMR, Relief-F and  forward feature selection uisng feature from all frequency bands. 

Feature 

Selection 

Method 
Model Accuracy Specificity Sensitivity F1-Measure 

mRMR 

SVM 
94.10% 

(±4.67) 

95.57% 

(±6.43) 

90.26% 

(±10.69) 

92.25% 

(±6.50) 

LDA 
88.19% 

(±4.88) 

85.65% 

(±6.78) 

85.74% 

(±9.86) 

85.31% 

(±6.20) 

RF 
91.84% 

(±5.09) 

97.04% 

(±3.45) 

82.50% 

(±12.98) 

88.55% 

(±8.24) 

DT 
84.07% 

(±5.22) 

83.16% 

(±7.25) 

76.53% 

(±12.36) 

79.08% 

(±7.21) 

Relief-F 

SVM 
94.83% 

(±4.73) 

97.47% 

(±6.17) 

90.48% 

(±11.16) 

93.22% 

(±6.57) 

LDA 
85.20% 

(±5.23) 

83.03% 

(±7.89) 

79.98% 

(±12.06) 

80.73% 

(±7.80) 

RF 
88.92% 

(±7.55) 

96.84% 

(±5.49) 

75.83% 

(±18.15) 

83.39% 

(±13.42) 

DT 
84.84% 

(±3.65) 

85.59% 

(±10.19) 

76.22% 

(±4.95) 

80.14% 

(±4.20) 

forward 

feature 

selection 

SVM 
98.52% 

(±1.29) 

99.25% 

(±1.84) 

97.30% 

(±3.14) 

98.22% 

(±1.57) 

LDA 
90.78% 

(±3.78) 

91.94% 

(±8.07) 

85.29% 

(±9.01) 

87.92% 

(±5.04) 

RF 
96.66% 

(±1.18) 

100.00% 

(±0.00) 

91.58% 

(±3.05) 

95.58% 

(±1.69) 

DT 
89.98% 

(±4.47) 

95.02% 

(±4.97) 

79.95% 

(±10.67) 

86.33% 

(±5.80) 
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Table 8 - Comparing our work with other existing works on the prediction of antidepressant treatment outcome from EEG 
signals 

Authors year feature Classifier Accuracy 

Mumtaz et al.[23] 2017 
Combination of Wavelets + STFT + 

EMD features 

Logistic 

Regression 
91.6% 

Jaworska et al.[19] 2019 

Demographic data, EEG power 

features, sourcelocalized current 

density 

RF 88% 

Zhdanov et al.[51] 2020 
power spectral, spatiotemporal 

complexity 
SVM 82.4% 

Salle et al. [20] 2020 

Change in Montgomery Åsberg 

Depression Rating Scale, Change in 

prefrontal cordance 

Logistic 

Regression 
85% 

Khodayari-

Rostamabad et 

al.[17] 

2013 

power spectral density, magnitude 

squared spectral coherence, mutual 

information, the log ratio of left-to-

right hemisphere powers and 

anterior/posterior log power ratios 

mixture of factor 

analysis 

classifier 

87.9% 

Patel et al.[25] 2015 

Demographical, Cognitive ability, 

Functional Imaging, Structural 

Imaging 

ADTree 89.47% 

Van der Vinne et 

al.[52] 

 

2019 

EEG Abnormality (Diffuse 

Slowing, Focal Slowing, 

Paroxysmal and NonParoxysmal 

Activity) 

ANOVA 
Response Rate 

= 74% 

Our work 2022 Effective connectivity SVM 98.52% 

 


