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Introduction: A major challenge today is personalizing the treatment for patients with major 
depressive disorder (MDD) to make it more efficient. To address this issue, we have proposed 
a novel approach based on machine learning (ML) models that utilize neural activity flow prior 
to treatment with selective serotonin reuptake inhibitor (SSRI) medication. 

Methods: The electroencephalogram signals of 30 patients were used to calculate the neural 
activity flow of each patient using the direct directed transfer function (dDTF). Then, based 
on the area under the curve (AUC) values, 30 important connections were identified for the 
delta, theta, alpha, beta, and gamma bands. To select the most critical neural activity flow, these 
neural activity flows were combined, and forward features, mRMR, and ReliefF methods were 
applied. Support vector machines (SVMs), decision tree, and random forest models are trained 
using selected neural activity flows. 

Results: Results showed that most connections originated from F8, Pz, T5, and P4, mainly 
from the frontal and parietal lobes. In addition, the SVM model showed 98% accuracy in 
classification using forward feature selection, where most of the neural activity flows were 
selected from alpha and beta. Finally, results indicate that patients who responded to treatment 
differed in their patterns of frontoparietal neural activity flows, implying that the frontoparietal 
network (FPN) is primarily involved in treatment response at alpha and beta frequencies.

Conclusion: Therefore, the proposed method can accurately detect responders in MDD 
patients. It can reduce costs for both patients and medical facilities.
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1. Introduction

ajor depressive disorder (MDD) is the 
most commonly diagnosed psychiat-
ric disorder worldwide, affecting more 
than 300 million individuals (Organiza-
tion, 2017). Symptoms of MDD include 

changes in mood, interests, pleasure, cognitive functions, 
and vegetative symptoms. Furthermore, MDD increases 
the risk of developing conditions such as diabetes melli-
tus, heart disease, and stroke. MDD has also been associ-
ated with suicide, which is approximately the reason for 
half of the 800000 suicides worldwide (Otte et al., 2016).

In the present day, several antidepressants that act on neu-
rotransmitter receptors are being used to treat depression. 
Almost all drugs act on two or more neurotransmitter recep-
tors, i.e. two serotonin receptors, two noradrenergic recep-
tors, or both. Also, several treatments are being investigated, 
including estrogen replacement therapy, mifepristone (RU-
486 or C-1073), as well as antagonists, such as corticotropin-

releasing factor, neurokinins, and injectable pentapeptides 
(Sambunaris et al., 1997; Stahl & Grady, 2003). MDD is a 
highly heterogeneous disorder, meaning that only a few peo-
ple find antidepressants effective. Several pretreatment vari-
ables have been found to moderate the treatment response, 
including depression severity and neuroticism, older age, less 
impairment in cognitive control, and employment (Cohen & 
DeRubeis, 2018; Webb et al., 2019).

In general, 40% of people suffering from MDD have 
treatment-resistant depression (TRD) since treatment 
of MDD requires a trial-and-error sequential treatment 
strategy, and first-line therapies do not meet their needs 
(Arteaga-Henríquez et al., 2019; Berlim et al., 2008; 
Leuchter et al., 2009). Often, MDD patients suffer from 
delayed treatment response, functional impairment, in-
creased suicide risk, and high medical costs due to the 
inability to predict which treatment will work. Conse-
quently, more effective treatment strategies for patients 
with MDD are urgently needed (Bremer et al., 2018; 
Goldman et al., 1999; Schwartz et al., 2021).

Highlights 

● The support vector machines (SVM) model achieved 98% accuracy in predicting response to SSRI medication in major 
depressive disorder (MDD) patients;

● Alpha and beta band neural activities were different between MDD patients who responded to selective serotonin 
reuptake inhibitor (SSRI) medication and non-responders;

● Frontal and parietal lobes dominate critical neural activity for MDD treatment prediction;

● Frontoparietal network connectivity at alpha and beta bands predicts the response to SSRI medication in MDD 
patients;

● Neural activity flow and feature selection improve EEG-based prediction of SSRI medication outcome for MDD.

Plain Language Summary 

Depression is one of the most common psychological disorders, and finding the right treatment for it can be 
challenging. The use of antidepressant medications may not be effective for everyone, and it often takes weeks or months 
of trial and error to determine the right approach. This delay can lead to frustration, increased suffering, and higher 
healthcare costs. Our study aims to improve this process by using brain activity data to predict whether a depressed 
patient will respond to SSRIs. We recorded brain signals from patients using the EEG (electroencephalography) 
before treatment. We then used a machine learning approach to analyze the brain activity patterns and found key 
differences between those who responded well to SSRIs and those who did not. We discovered that the frontal and 
parietal regions (areas related to thinking and attention) had different activity patterns in patients who benefit from 
SSRIs. Our predictive model was highly accurate, correctly identified responders to treatment by 98%. This model 
can help doctors personalize treatments for depressed patients more quickly, reducing the time spent on ineffective 
medications. By predicting who is likely to respond to specific treatments, we can improve patient outcomes, reduce 
suffering, and lower healthcare costs.

M
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Because of advances in neuroimaging techniques, bio-
markers from neuroimaging studies are of great value 
for achieving precision medicine for many psychiatric 
disorders (Kang & Cho, 2020). In recent years, neuroim-
aging studies have been published utilizing a variety of 
methods, including electroencephalogram (EEG), brain 
volumetric magnetic resonance imaging (MRI), func-
tional magnetic resonance imaging (fMRI), and diffu-
sion tensor imaging to identify biomarkers for treatment 
response to antidepressants (Kemp et al., 2008). EEGs 
can be an effective and relatively inexpensive method 
for studying developmental changes in brain-behavior 
relationships, and their high temporal resolution makes 
them particularly useful for examining neural activity 
flow in the nervous system (Bell & Cuevas, 2012; Smit 
et al., 2008).

Recently, many studies have focused on EEG to predict 
how a patient will respond to antidepressant medication 
(de la Salle et al., 2020; Jaworska et al., 2019; Khodayari-
Rostamabad et al., 2013; Shahabi & Shalbaf, 2022). For 
example, patients who respond to treatment demonstrate 
improved absolute alpha power at baseline, which can 
be used as a biomarker to predict treatment response 
(Baskaran et al., 2018). Also, the interhemispheric neu-
ral activity flow in the temporal lobe exhibits 99.61% 
classification capability using only four EEG channels 
(Zhang et al., 2022). A study conducted by Mumtaz et al. 
(2017) involved extracting time-frequency features from 
different frequency bands of EEG signals and classifying 
them by using three time-frequency decomposition tech-
niques, including wavelet transforms, short-time Fourier 
transforms, and empirical modes of decompositions, to 
predict treatment-outcome for MDD patients. Combin-
ing the best features from the decomposition methods 
described above provides a classification accuracy of 
91.6% (Mumtaz et al., 2017). Likewise, Jaworska et al. 
utilized demographical features with EEG data to im-
prove the classification results (Jaworska et al., 2019). 
As demonstrated by Salle et al., changes in theta cor-
dance of the prefrontal and midline right frontal in the 
first week of treatment can provide a predictive indica-
tor of the response to antidepressants (de la Salle et al., 
2020). Additionally, Kautzky et al. used a random forest 
approach to correctly identify 25% of patients with TRD 
based on clinical variables and three polymorphisms 
(Kautzky et al., 2015). Moreover, Patel et al. predicted 
an 89% treatment response using various biometrics, 
including demographic information and structural and 
functional imaging features (Patel et al., 2015).

This research significantly contributes to predicting 
treatment outcomes in MDD through the innovative use 
of neural activity flow based on the direct directed trans-
fer function (dDTF). Firstly, we demonstrate that neural 
activity flow features, particularly those derived from the 
dDTF, can accurately predict antidepressant response in 
MDD patients. It provides insight into differentiating 
between individuals who positively respond to selective 
serotonin reuptake inhibitors (SSRIs) and those who do 
not. Secondly, our work achieves new state-of-the-art 
accuracy in EEG-based prediction for MDD treatment 
by incorporating neural activity flow as a feature in ma-
chine learning (ML) models, including support vector 
machines (SVMs), linear discriminant analysis (LDA), 
decision trees (DT), and random forests (RF), surpassing 
existing benchmarks and enhancing the potential clinical 
applicability of our findings. Lastly, our analysis iden-
tifies specific brain regions and networks that indicate 
treatment failure in MDD, enriching our understanding 
of the neural underpinnings of treatment outcomes and 
offering critical insights for developing targeted interven-
tions. In summary, our work presents a novel and com-
prehensive approach to predicting treatment outcomes in 
MDD, leveraging neural activity flow and ML models. 
Our contributions include the accurate prediction of anti-
depressant response, achieving state-of-the-art accuracy 
in EEG-based prediction, and identifying specific neural 
correlates of treatment failure, collectively representing 
a significant step forward in the field and providing valu-
able insights and tools for advancing personalized treat-
ment strategies for individuals with MDD.

2. Materials and Methods

Dataset

The EEG signal dataset used in this study was provid-
ed by Mumtaz et al. (2017). The data sets included 34 
MDD patients and 30 healthy individuals. Among the 34 
MDD patients, 17 men and 17 women have a mean age 
of 40.3±12.9 years. For the eyes closed condition, only 
30 EEG segments, of 19 channels each, were available, 
which were used in this study. MDD patients were diag-
nosed using the diagnostic and statistical manual of men-
tal disorders, fourth edition (DSM-IV) criteria (GUZE, 
1995). An MDD patient was treated for four weeks with 
SSRI antidepressants. If there is a 50% improvement 
from pre- to post-treatment, the MDD patient is consid-
ered a responder; otherwise, the subject is considered a 
nonresponder. Based on the Beck depression inventory 
(BDI), 12 patients responded to treatment, while 18 pa-
tients showed no significant improvement (Table 1).
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The 10-20 electrode placement system records the 
EEG for 5 minutes using a 19-electrode EEG cap with 
linked-ear references. Five different brain regions are 
represented by electrodes: The frontal lobe containing 
Fp1, F3, F7, Fz, Fp2, F4, and F8; the parietal lobe con-
taining P3, Pz, and P4; the occipital lobe containing O1 
and O2; the left and right temporal lobe containing T3, 
T4, T5, T6 electrodes; and finally the central lobe with 
C3, C4, and Cz electrodes.

EEG preprocessing

To prevent erroneous subsequent analysis and ensure 
that the underlying neuronal activity is accurately re-
flected in the data, the preprocessing steps have been 
carried out using the EEGLAB open-source toolbox. To 
remove baseline drift, a 1-Hz high-pass filter is first ap-
plied. Then, the CleanLine open-source plugin is used to 
remove line noise. Lastly, 3 minutes of data are used for 
further analysis. 

Effective connectivity

The concept of effective connectivity or neural activ-
ity flow refers to the influence a node has over another 
based on a model of neuronal integration, which iden-
tifies neuronal coupling mechanisms (Liu et al., 2017). 
Among the first models used to establish causality be-
tween two time series is Granger causality, which was 
introduced in economics. As explained by Granger 
causality, a time series of X1 causes a time series X2, if 
knowledge of X1 helps to make predictions of X2 more 
accurate (Granger, 1969). A measure of brain activity as-
sociated with Granger causality is the DTF. This func-
tion represents a linear combination of causal influences 
along all causal pathways, direct and indirect, begin-
ning at one site and ending at another (Korzeniewska 
et al., 2008). To distinguish direct from indirect flows, 
a dDTF is proposed (Korzeniewska et al., 2003). The 
dDTF method determines the strength and direction of 
the direct flow of neural activity using DTF combined 
with partial coherence. To calculate the dDTF, the source 
information flow toolbox (SIFT) is used (Delorme et al., 
2011; Mullen, 2014). Through SIFT, each subject’s EEG 
data was divided into 18 segments, each lasting 10 sec-
onds. A multivariate autoregressive (MVAR) model of 
order 20 was then fitted to the data, satisfying two cri-
teria of stability and consistency. This process indicates 
that the model produces data with the same correlation 
structure as the actual EEG data and is stable/stationary. 
This step is crucial in ensuring the accuracy and reli-
ability of subsequent analyses. Then, dDTF values were 
calculated for each data segment across all frequency 

ranges, and since we had 19 electrodes, a matrix with the 
shape of 19*19* frequency was obtained. At the end of 
the process, the delta (1-4 Hz), theta (4-8 Hz), alpha (8-
13 Hz), beta (13-30 Hz), and gamma (30-45 Hz) bands 
were extracted. 

To provide an overview of the dDTF method, the EEG 
signal is first fitted with an MVAR model. Then, to 
model a k-channel process, X(t) is modeled as follows 
(Equation 1):

1. X(t)=(X1 (t), X2 (t),…, Xk (t))

This equation would lead to the following expression 
for the MVAR model: 

2. 
j=1

X(t)=∑ A(j)X(t-j)+E(t)
p

In the above Equation, X(t) represents the data vec-
tor in time t, E(t) represents the white noise vector, A(i) 
represents the model coefficients, and p represents the 
order of the model. After that, as a result of converting 
the model Equation into a frequency domain, we obtain: 

3. X(f)=A-1 (f)E(f)=H(f)E(f)

In the above Equation, X(f) is the input signal, E(f) 
is white noise, and the H(f) matrix is referred to as the 
transfer matrix of the system, in which f denotes the 
frequency of the input signal. The DTF can be defined 
as follows in accordance with the transfer function of 
MVAR:

4. DTF2
j→i (f)=

|Hij (f)|
2

∑ k 
m=1) |Him (f)|2

For the dDTF formula, the DTF must be modified with 
partial coherence as follows:

5. S(f)=H(f)VH*(f)

6. pCoh2
ij (f)=

M2
ij(f)

Mjj (f)Mii (f)

where S(f) is power spectra, V is the variance of the 
noise E(f) and Mij is spectral matrix S by removing the 
ith row and jth column. Finally, dDTF is defined by the 
given formula:

7. dDTFij (f)=DTFij (f) pCohij (f)  

Feature selection 

To select the best features for discriminating between 
responder and nonresponder groups, one-seventh of the 
data was set aside for testing, and then LDA was used 
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to calculate the area under a curve (AUC) of every neu-
ral activity flow in each band. This study uses the AUC 
since the area under the receiver operating characteristic 
curve (AUC-ROC) is equivalent to the Mann–Whitney 
U statistic (Mason & Graham, 2002). ROC curves were 
calculated by comparing the model’s false-positive rate 
against its true-positive rate across a range of thresholds. 
AUC-ROC value was obtained based on the mean val-
ues of all CV sets. The mean AUCs are a valid measure 
of the model’s performance in a generalized setting in 
which the model was trained, given that each of the ana-
lyzed learners received a unique training set and a unique 
model-external validation dataset during training. Next, 
the top 30 connections from each band with the highest 
AUC are selected; then, the feature selection algorithms 
are applied.

This paper uses three feature selection methods. The 
first is based on the area AUC-ROC. In this method, a 
subset of features is assessed empirically by measuring 
the prediction accuracy of the feature subset selected by 
our method. In other words, the forward selection is an 
iterative process in which we start without any features 
in the model. We continue to add new features to our 
model in each iteration, and then we select the subset of 
features with the highest accuracy out of all the others 
(Mamitsuka, 2006). Second, the minimum-redundancy 
maximum-relevance (mRMR) algorithm has been used 
to rank features to minimize redundancy while maxi-
mizing relevance. The mRMR algorithm uses mutual 
information to compute similarity scores between fea-
tures and labels of a subset, aiming to minimize the mean 
mutual information between two features and to maxi-
mize the mean mutual information between each feature 
and the specific label (Amini et al., 2023; Ding & Peng, 
2005; Şen et al., 2014). As for the last method, ReliefF is 
used. Like k-nearest neighbors, ReliefF assigns weights 
to each feature based on its ability to separate class la-
bels. If the squared Euclidean distance between a fea-
ture and its nearest instances of the same class is greater 
than the distance between the two instances of the other 
class, the weight of the feature decreases. Based on the 
Manhattan distance, ReliefF calculates both negative 
and positive weights for each feature (Al-Nafjan, 2022; 
Peker et al., 2015).

Classification

In artificial intelligence, supervised learning refers to 
a subcategory of ML that uses labeled datasets to train 
algorithms capable of classifying data or predicting out-
comes. SVMs are supervised learning algorithms used to 
classify two data groups. The algorithms draw lines (hy-

perplanes) to separate groups based on their patterns. An 
SVM builds a learning model that assigns new examples 
to one group or another. As a result of these functions, 
SVMs are called non-probabilistic binary linear classi-
fiers. This paper also uses a random forest composed of 
many individual decision trees. Trees in the forest gener-
ate a class prediction, and the class with the most votes 
determines the class prediction for our model. In addi-
tion, the LDA classifier is used to classify two groups 
using a linear combination of features.

Statistical analysis

The AUC value was calculated for each neural activ-
ity flow to evaluate the importance of each neural ac-
tivity flow. Afterward, the 30 top connections with the 
highest value were selected. Also, to evaluate any ML 
model’s performance, we need to test it on some unseen 
data. Based on the model’s performance on unseen data, 
we could say whether our model is under-fitting, over-
fitting, or well-generalized. A cross-validation (CV) pro-
cedure is used to assess the effectiveness of ML models; 
it can also be used to evaluate a model if we have insuffi-
cient data. For a CV to be performed, some training data 
must be kept aside for evaluation later. In this paper, the 
k-fold method was used for CV. During k-fold cross-val-
idation, the original sample is divided into k subsamples 
of equal size. A single subsample of the k subsamples 
was retained as the validation data for testing the model, 
while the remaining k-1 subsamples were used as train-
ing data for training the model. In the process of trial and 
error, it was determined that 7 is the optimal value for k. 
Further analysis was conducted based on the results of 
the 7-fold CV.

Overview of the proposed method

Figure 1 illustrates the proposed method. In the first 
step, raw EEG data were preprocessed using EEG-Lab, 
an open-source toolbox. A high-pass filter with a 1-Hz 
frequency and CleanLine noise were applied as part of 
the preprocessing steps. Afterward, the signals were di-
vided into 18 segments, each lasting 10 seconds. The 
neural activity flow was calculated from each segment, 
and a matrix of 19-channels * 19-channels * 45-fre-
quency steps was obtained. Then, the delta, theta, alpha, 
beta, and gamma bands are extracted by averaging over 
the frequency ranges of 1-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 
Hz, and 30-45 Hz. Following this, AUC-ROC forward 
feature selection, mRMR, and Relief-F algorithms were 
used to find the best features from all frequency bands. 
The selected features trained SVM, LDA, RF, and DT 
classifiers.
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Figure 2. The mean power spectral density (PSD) of responders and nonresponders in the delta, theta, alpha, beta and gamma 
bands
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Non-Responders 

Delta (1-4 Hz) Theta (4-8 Hz) Alpha (8-13 Hz) Beta (13-30 Hz) Gamma (30-45 Hz) 

Figure 2 - The Mean Power Spectral Density (PSD) of Responders and Nonresponders in the Delta, Theta, Alpha, Beta and Gamma Bands 

Figure 1. An EEG signal recorded in a 10-20 system and preprocessed

EEG: Electroencephalogram; dDTF: Direct directed transfer function.

Notes: The dDTF matrix for the delta, theta, alpha, beta, and gamma frequency bands is calculated in the following step. After-
ward, several feature selection methods are used to select the best neural activity flows. In the final step, the selected features 
are used to perform classification.
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Figure 3. Normalized neural activity flow (dDTF) in responders vs nonresponders across bands

MDD: Major depressive disorder; dDTF: Direct directed transfer function.
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Figure 4. Based on AUC values, the top 30 neural activity flows showing differences in propagation between responders and 
nonresponders 

AUC: Area under curve. 

Notes: Nodes represent electors in the 10-20 system, and edges represent AUC values.
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3. Results

Topographic maps

Figure 2 shows topographic maps for MDD patients 
in the five frequency ranges of delta, theta, alpha, beta, 
and gamma. It is clear from this figure that the responder 
group shows lower delta power compared to the nonre-
sponder group, whereas the responders show higher beta 
power. In the theta band, the most significant difference 
is observed in the left temporoparietal lobe, whereas in 
the alpha band, the most significant difference is ob-

served in the central areas. As can be observed in the 
beta band, respondents generally showed higher power, 
particularly in the left temporal lobe, which is also ob-
served in gamma.

Regional differences in responders versus nonre-
sponders 

After calculating each segment’s neural activity flow 
matrix, the mean values in responders and nonresponder 
groups were calculated (Figure 3). Then, based on the 
dDTF values corresponding to each directed connection, 

Table 1. Summary of MDD patients’ clinical characteristics

Information
Mean±SD

Responder Nonresponder Total

Age (y) 40.7±13 41.1±12.5 40.3±12.9

Gender (female/male) 8/8 9/9 17/17

Pretreatment BDI-II 18.4±7. 4 22.8±12.5 20.6±8.6

Post-treatment BDI-II 9.1±6.3 22.1±3.3 15.6±4.5

BDI: Beck depression inventory. 

Figure 5. SVM forward feature selection based

SVM: Support vector machine. 

NOTES: The x-axis indicates the number of features used for classification, and the y-axis indicates the model’s accuracy. With 
23 features, the best accuracy was obtained, and since there was no improvement in accuracy, the x-axis is restricted to 40 
features.

20 
 

Abbreviation: AUC, area under curve. 

 

Figure 5. SVM Forward Feature Selection Based 

 The x-axis indicates the number of features used for classification, and the y-axis indicates the model's accuracy. With 23 
features, the best accuracy was obtained, and since there was no improvement in accuracy, the x-axis is restricted to 40 
features. 

Abbreviation: SVM, support vector machine. 
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Table 2. Top 30 AUC values of neural activity flows for responders vs nonresponders by band

GammaBetaAlphaThetaDelta

AUCToFromAUCToFromAUCToFromAUCToFromAUCToFrom

0.753F8T50.7F8T50.763T5T30.752T5T30.698T5T3

0.733F8T30.698F8T40.68T3T50.739PzO10.668PzO1

0.716F8O10.697F8T30.654F8T60.708F8C30.659PzO2

0.711F8O20.692F8C30.648C4F80.703F8F30.653T5P3

0.705F8P30.689O1T50.648F8Pz0.694F8F70.652T5Cz

0.704F8Fp10.685P4O20.647P4O20.691PzF80.644T5F4

0.699P4O20.677F8P30.646O1T30.687PzFp20.643F8F7

0.697P4T50.668T5T30.642O1T50.686CzO10.64P3T3

0.691P4O10.668F8O10.64F8F70.672PzC30.632T5Fz

0.691PzO10.662F8Pz0.639CzO10.67T3T50.627F8C3

0.688P4T30.658PzO10.637F8F30.67T5Fp10.627T3C3

0.686PzT30.656F8Fp10.636F8Fp10.667PzFz0.627PzP3

0.676F8P40.651F8O20.636P4T60.666C4T40.625F8P3

0.674PzO20.65CzF30.635T5O10.663T5F40.624F3F7

0.672F8F30.647PzC30.633C4F40.655P3T30.622O1T3

0.671F8Pz0.643PzT30.630F4Fz0.653T5P30.622T5Fp2

0.671T4O10.637F8F30.628P4O10.651PzT40.621T3P3

0.669P4Fp10.633PzO20.626F4F80.648F8P30.621T5F3

0.665F8C30.633CzFp20.626F4C40.645T5Fp20.618C4T4

0.665F8F70.633O1Pz0.625C4Cz0.645P4O10.618F8O1

0.665PzC30.633F8P40.625F8Fp20.643T5Fz0.618FzF7

0.662PzFp10.629T5Pz0.625F8P30.64F8O10.617T6T5

0.662F4Fz0.627P3O10.624T5O20.64PzT50.617F8F3

0.662FzFp10.626F8Cz0.623T6O20.639PzFp10.616T5T6

0.661O2T30.626F8Fp20.622PzP40.639F8Cz0.615F8T3

0.659F7T60.626F8T60.622CzT50.639T5F80.614PzT4

0.659PzFp20.624F8F70.621F4Cz0.639PzF40.612T3T5

0.659CzO20.624T5P30.621T3F70.637T5Cz0.611F8T5

0.655CzT50.623PzFp20.621T4Fp10.637P3Fz0.611T5Fp1

0.65F8Cz0.62P4Fp10.62T3Cz0.636PzC40.61T5C3
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the AUC values were calculated for each independently. 
Afterward, they were ranked according to their top 30 
AUC values (Table 2 and Figure 4). Table 3 summarizes 
each region in terms of frequency to identify the most 
critical regions. According to this Table, the frontal lobe 
has the highest number of neural activity flows, followed 
by the temporal and parietal lobes. As a result, the frontal 
and parietal lobes were the dominant regions for most 
connections. Moreover, an overview of all electrodes 
from the top 30 bands shows that most connections end 
in specific regions, particularly in the electrodes F8, Pz, 
T5, and P4 (Table 4).

Classification responder based on the neural ac-
tivity flow 

Table 5 presents the classification results of ML models 
for each frequency band and a combination of features 
from all bands, consisting of 150 connections (30 con-
nections from each band). The top 150 features had the 
highest accuracy, specificity, sensitivity, and F1-measure 
in every model. Following that, the beta and alpha bands 
yielded the highest results. As seen, most models had 
a higher specificity than sensitivity, indicating that the 
models were more capable of correctly identifying pa-
tients who would respond to the treatment. 

Table 3. An overview of electrodes in all frequency bands

Number of Connections toElectrodeNumber of Connections FromElectrode

47F816O1

26Pz15T3

24T513T5

11P411O2

7Cz11Fp1

7T310P3

5C49C3

5F48Cz

5O18F7

4P38Fp2

2Fz7F3

2T46Fz

2T65Pz

1F35T4

1F75T6

1O24F8

4F4

3P4

2C4

Notes: On the left side, there are electrode names and the number of connections that originated from the electrode, and on the 
right side, there are electrode names and the number of connections from which connections end.
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One of the main problems with ML models is the curse 
of dimensionality, which means that the error becomes 
larger as the number of features increases. To overcome 
this problem, different feature selection algorithms have 
been used, including mRMR, ReliefF, and forward fea-
ture selection algorithms. Based on Table 6, forward 
feature selection achieved the highest accuracy. Figure 
5 shows how the highest performance can be obtained 
using only 23 features, and that accuracy decreases af-
terward, and the selected features are shown in Table 7. 
Thus, forward feature selection based on the ROC-AUC 
algorithm improved classification accuracy when using 
the best subset of features.

4. Discussion

In this study, we demonstrated an ML approach using 
EEG-derived neural activity flows that accurately pre-
dict antidepressant response and provide neuroscien-
tific insights into mechanisms of treatment outcomes. 
Precisely, we extracted dDTF effective connectivity 
biomarkers in MDD patients to capture differences be-
tween treatment responders and nonresponders across 
brain regions and frequencies. Our findings indicate that 
frontoparietal network (FPN) connectivity at alpha and 
beta bands underlies response failures, aligning with 
cognitive theories implicating this circuitry. By combin-
ing dDTF neural activity flow features with SVM clas-

sifiers, our model significantly improved predictive per-
formance over previous state-of-the-art EEG methods, 
achieving over 98% accuracy. This method establishes 
functional connectivity as an informative biomarker for 
guiding antidepressant selection while elucidating net-
work deficits linked to treatment resistance.

Based on the findings in Table 3, F8, Pz, T5, and P4 
are the most important regions that differ between re-
spondents and nonresponders. Further, neural activity 
flows were used to predict treatment outcomes and dif-
ferent feature selection algorithms were applied to im-
prove classification results. As a result, by using forward 
feature selection across all frequency bands, the best ac-
curacy of 98.52% was achieved by SMV (Table 6). Al-
though SVMs perform better in very high-dimensional 
spaces and SVM models have generalizability in prac-
tice, the risk of overfitting is lower in SVMs. Also, for 
its parameters, a unique global optimum can be easily 
determined (Garcia et al., 2003; Subasi & Gursoy, 2010). 
Additionally, SVM is based on its kernel, and selecting 
the appropriate kernel function can resolve any complex 
problem. In this study, the best result was achieved by 
using the radial basic function. Also, there have recently 
been some studies that have criticized the reproducibility 
of AI methods because the evaluation methods may be 
incorrect, and many of them may suffer from data leak-
age or overfitting (Gibney, 2022). As discussed, we have 

Table 4. A summary of all frequency bands’ connections

ToFromRegion

SumGBATDSumGBATD
C (C3, C4, Cz)

12225211933454

SumGBATDSumGBATD
F (Fp1, Fp2, F3, F4, F7, F8, Fz)

5615151169488810139

SumGBATDSumGBATD
O (O1, O2)

6122012786643

SumGBATDSumGBATD
P (P3, P4, Pz)

4111841351836324

SumGBATDSumGBATD
T (T3, T4, T5, T6)

3513891438877610

Notes: Rows represent the number of connections within each region, with C, F, O, P, and T reflecting the central, frontal, 
occipital, parietal, and temporal lobes of the brain and columns D, T, A, B, and G correspond to delta theta, alpha, beta, and 
gamma respectively. In this Table, the ''from'' columns show the number of connections originating from the specified region, 
and the ''to'' column shows the number of features ending in the specified region.
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used CV to train and evaluate the model on the entire 
dataset to overcome these problems. By fitting the model 
in every step and estimating its performance indepen-
dently in each fold of the CV procedure, we can identify 
problems such as overfitting or selection bias and learn 
how the model will generalize to an independent dataset 

since it gives an almost unbiased performance. Overfit-
ting was also overcome by using different feature selec-
tion methods.

Table 3 outlines the starting and ending points of the 
top 30 activity flows across all frequency bands; only 

Table 5. A comparison of SVM, LDA, RF, and DT classification results in the delta, theta, alpha, beta, and gamma bands

Band Model

Mean±SD

Model Performance Metrics (%)

Accuracy Specificity Sensitivity F1-measure

Delta

SVM 84.81±7.33 87.43±8.81 73.25±14.16 79.04±10.45

LDA 81.46±8.65 81.43±6.4 69.09±21.11 73.26±15.38

RF 80.37±8 79.87±8.92 66.51±16.99 71.84±13.49

DT 75.55±6.26 75.51±9.07 59.32±16.00 65.08±10.36

Theta

SVM 84.82±4.22 89.34±9.3 71.84±8.09 79.04±5.55

LDA 81.84±3.72 82.43±5.79 70.87±11.33 75.38±5.25

RF 82.96±2.35 91.01±8.5 64.88±8.84 74.92±4.44

DT 74.09±4.27 66.92±5.71 68.19±9.83 67.34±6.86

Alpha

SVM 86.26±4.42 91.87±7.7 73.57±10.17 80.96±5.82

LDA 78.85±4.22 81.27±6.95 62.32±7.42 70.09±5.09

RF 87.06±7.68 97.86±3.49 69.66±18.57 79.88±13.38

DT 77±8.98 74.18±13.12 68.78±10.72 70.69±10.05

Beta

SVM 87.04±3.87 89.85±4.77 77.38±8.89 82.71±4.41

LDA 82.96±6.27 84.59±8.28 71±9.57 76.94±8.22

RF 87.04±6.42 92.4±7.27 74.5±11.03 82.14±8.66

DT 76.24±4.97 74.41±9.19 64.27±13.12 67.77±7.83

Gamma

SVM 77.45±7.23 76.68±11.79 62.4±12.63 68.29±11.3

LDA 70.4±6.47 67.06±6.91 53.73±15.17 58.21±11

RF 80.81±8.03 80.57±13.68 68.51±12.38 73.49±11.95

DT 66.64±5.9 60.67±9.12 55.6±13.74 56.38±8.19

Top 150

SVM 93.35±5.96 96.43±6.56 87.84±12.68 91.22±8.33

LDA 82.63±6.83 79.39±12.33 76.29±12.6 77.11±9.88

RF 88.56±8.4 95.76±6.71 74.81±16.92 83.05±14.11

DT 80.35±5.54 83.15±6.85 65.15±9.88 72.55±6.79

Abbreviations: SVM: Support vector machine; LDA: Linear discriminant analysis; RF: Random forests; DT: Decision trees.
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a few areas have the greatest impact on treatment out-
comes. First and foremost, the frontal lobe region, espe-
cially the F8, is dominant for most neural activity flows. 
Following that, the parietal (Pz and P4) and temporal 
(T5) lobes were the dominant regions. Additionally, the 
findings indicated that this pattern represents a valuable 
brain biomarker that could be used to assess the treat-
ment response of MDD patients before they begin their 
treatments, thereby reducing costs and reducing the time 
spent on patients and medical centers. For example, F8 
also has a high classification capability (Hasanzadeh et 
al., 2021). Also, it may be possible to predict the efficacy 
of SSRIs by analyzing frontal EEG recordings collected 
during the first week of treatment (Iosifescu et al., 2009).

Table 7 illustrates the SVM-selected features for ob-
taining the best accuracy. With only 23 features, 98.5% 
accuracy has been achieved, and most of the features 
were selected from beta and alpha bands. Further, beta 
and alpha bands produced the best results when each 
frequency was used separately to predict treatment out-
comes. Whether we use the neural activity flows of each 
frequency band separately or combine all features in all 
frequency bands, the beta and alpha bands are better dis-

criminators for predicting a person’s response to treat-
ment.

A flexible and coordinated modulation of cognitive and 
emotional processes is enabled by the FPN, composed of 
lateral prefrontal and posterior parietal cortices (Martens 
et al., 2021). It has been shown that the FPN is activated 
during externally focused attention and goal-oriented 
task performance. A defining characteristic of MDD is 
the deficiency in concentration, and cognitive theories 
suggest that impaired top-down regulation of aberrant 
emotional processing perpetuates a bias toward negative 
effects (Fischer et al., 2016). It has been shown that de-
pression symptoms are associated with decreased neural 
activity flows between the FPN and other parts of the 
brain (Schultz et al., 2018). The study results show that 
the most significant difference between these groups can 
be traced to the frontal and parietal lobes (Table 4). Study 
results supporting our findings suggest that the beta fre-
quency of default mode network-FPN might serve as a 
neural marker for reoccurring illness (Pizzagalli, 2011; 
Whitton et al., 2018). Further studies have shown that 
EEG beta power correlates with cortisol secretion and 
attentional processing, as seen in Figure 2, where higher 

Table 6. SVM, LDA, RF, and DT results using mRMR, ReliefF, and forward feature selection

Feature Selection 
Method Model

Mean±SD

Model Performance Metrics (%)

Accuracy Specificity Sensitivity F1-measure

mRMR

SVM 94.1±4.67 95.57±6.43 90.26±10.69 92.25±6.5

LDA 88.19±4.88 85.65±6.78 85.74±9.86 85.31±6.2

RF 91.84±5.09 97.04±3.45 82.5±12.98 88.55±8.24

DT 84.07±5.22 83.16±7.25 76.53±12.36 79.08±7.21

ReliefF

SVM 94.83±4.73 97.47±6.17 90.48±11.16 93.22±6.57

LDA 85.2±5.23 83.03±7.89 79.98±12.06 80.73±7.8

RF 88.92±7.55 96.84±5.49 75.83±18.15 83.39±13.42

DT 84.84±3.65 85.59±10.19 76.22±4.95 80.14±4.2

Forward feature selection

SVM 98.52±1.29 99.25±1.84 97.3±3.14 98.22±1.57

LDA 90.78±3.78 91.94±8.07 85.29±9.01 87.92±5.04

RF 96.66±1.18 100±0 91.58±3.05 95.58±1.69

DT 89.98±4.47 95.02±4.97 79.95±10.67 86.33±5.8

Abbreviations: SVM: Support vector machine; LDA: Linear discriminant analysis; RF: Random forests; DT: Decision trees.
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beta power is observed in the responding group, mainly 
in regions related to FPN. Moreover, Baskarana et al. 
reported that changes in beta asymmetry observed at 2 
weeks post-treatment in the responding group may re-
flect differences in arousal induced by antidepressants 
(Baskaran et al., 2018). Finally, our findings suggest that 
treatment failure results from alpha and beta-frequency 
frontoparietal networks at the network level.

Although this simple approach to dDTF analysis en-
abled the classification of the treatment responses with 

98% accuracy, it might not allow inference about the 
neural activity flow of particular frequency bands (delta, 
theta, alpha, beta, gamma, etc.) within the neural system. 
To ensure a good representation of low-amplitude (high-
er-frequency) rhythms in MVAR modeling, the analysis 
should be done step by step by filtering out high-ampli-
tude (low-frequency) rhythm(s) (by high-pass filter with 
a gentle slope, not steep) and by fitting a separate MVAR 
model to the filtered signals.

Table 7. The selected features using the forward feature selection algorithm using the SVM model

Band AUC To From

Alpha 0.763 T5 T3

Alpha 0.636 P4 T6

Beta 0.689 O1 T5

Gamma 0.699 P4 O2

Beta 0.7 F8 T5

Delta 0.627 Pz P3

Alpha 0.642 O1 T5

Beta 0.65 Cz F3

Alpha 0.633 C4 F4

Beta 0.627 P3 O1

Alpha 0.646 O1 T3

Delta 0.622 O1 T3

Alpha 0.626 F4 C4

Beta 0.662 F8 Pz

Alpha 0.621 T3 F7

Beta 0.633 F8 P4

Theta 0.666 C4 T4

Beta 0.624 T5 P3

Beta 0.633 Cz Fp2

Delta 0.611 F8 T5

Beta 0.677 F8 P3

Gamma 0.662 F4 Fz

Gamma 0.665 F8 F7

Notes: The features are neural activity flows based on the dDTF method in all frequency bands. 
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The proposed model achieved higher accuracy than 
other studies in predicting antidepressant treatment 
outcomes based on EEG signals by combining neural 
activity flow and forward feature selection (Table 8). 
This result indicates that, in addition to showing causal-
ity and assisting in understanding the leading cause of 
treatment outcomes, it can also improve classification 
results. Also, several limitations should be considered, 
including the small number of patients from one loca-
tion that may affect the generalizability of our findings. 
Moreover, this study used only neural activity flow on 
channels, but future work may calculate neural activity 
flow on the brain source localization or combine dif-
ferent types of features. Also, our paper has only used 
ML models. However, with the advancements in deep 
learning models, it would be beneficial to use them to 
improve prediction results. 

5. Conclusion

This study investigated a novel method for classifying 
treatment responses in MDD patients based on neural 
activity flows. Using neural activity flows, altered brain 
activity can be identified as causing TRD. Based on the 
findings of this study, it was demonstrated that the most 
important neural flows that differ between responders 
and nonresponders are related to the frontal and pari-
etal lobes at beta frequency, suggesting that the FPN is 
mainly involved in treatment response. Also, using this 

kind of neural flow as an input feature in an SVM model 
and forward feature selection alongside, we could clas-
sify responders and nonresponders accurately with an 
accuracy of 98%. The results of this study suggest that 
ML models can help predict an individual’s response to 
antidepressants at the beginning of a treatment program.
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Table 8. Comparing our work with other existing works on the prediction of antidepressant treatment outcome from eeg 
signals

Authors, Year Feature Classifier Accuracy

Mumtaz et al., 2017 Combination of wavelets + STFT + EMD features Logistic regression 91.6%

Jaworska et al.,2019 Demographic data, EEG power features, source 
localized current density RF 88%

Zhdanov et al., 2020 Power spectral, spatiotemporal complexity SVM 82.4%

de la Salle et al., 2020 Change in Montgomery Åsberg depression rating 
scale, change in prefrontal cordance Logistic regression 85%

Khodayari-Rostamabad et al., 2013

Power spectral density, magnitude squared spec-
tral coherence, mutual information, the log ratio 
of left-to-right hemisphere powers, and anterior/

posterior log power ratios

Mixture of factor 
analysis classifier 87.9%

Patel et al., 2015 Demographical, cognitive ability, functional imag-
ing, structural Imaging AdTree 89.47%

Van der Vinne et al., 2019 EEG Abnormality (diffuse slowing, focal slowing,
paroxysmal and nonparoxysmal activity) ANOVA Response 

rate=74%

Our work (2022) Effective connectivity SVM 98.52%

Abbreviations: SVM: support vector machine; ANOVA: Analysis of variance; RF: Random forests; EEG: Electroencephalogram.
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