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Abstract 

Repetitive transcranial magnetic stimulation (rTMS) is considered a non-pharmacological treatment for drug-

resistance Major Depressive Disorder (MDD) patients. Since the outcome rate of rTMS treatment is about 50-55 %, 

it is essential to predict the treatment outcome before starting the treatment based on electroencephalogram (EEG) 

signals, which can lead to the identification of effective biomarkers and could reduce the burden of health care 

centers. Pretreatment EEG data with 19-channel in the resting state from 34 drug-resistant MDD patients were 

recorded. All patients received 20 sessions of rTMS treatment, and a reduction of at least 50% in the total Beck 

Depression Inventory (BDI-II) score before and after the rTMS treatment is defined as a reference. In current study, 

effective brain connectivity features are determined by the direct directed transfer function (dDTF) method from 

pre-treatment EEG data of patients in all frequency bands separately. Then, the brain functional connectivity 

patterns are modeled as graphs by the dDTF method and examined with the local graph theory indices including 

degree, out-degree, in-degree, strength, out-strength, in-strength, and betweenness centrality. The results indicated 

that the Betweenness centrality index in node Fp2 and delta frequency band is the best biomarker and has the highest 

area under the receiver operating characteristic curve (AUC-ROC) value of 0.85 for prediction of the rTMS 

treatment outcome in drug-resistance MDD patients. The proposed method investigates the significant biomarkers 

that can be used to obtain the rTMS treatment outcome in drug-resistance MDD patients to help clinical decisions. 

 

Keywords: Effective connectivity, Electroencephalogram (EEG), Graph theory, Major depressive disorder 

(MDD), Repetitive transcranial magnetic stimulation (rTMS). 
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Introduction 

 Major Depressive Disorder (MDD) is a common mental disorder that affects over 264 million 

people of different ages. Depression is an important cause of disability and contributes significantly to the 

overall burden of illness associated with personal, social, and economic problems [1, 2]. People with 

MDD experience symptoms such as low and chronic mood, decreased pleasure from previous activities, 

sleep disorders, mental retardation, fatigue and energy loss, weight change, and negative thoughts. They 

also include pessimism to sin and the idea of suicide [3].  

 Medicines and psychotherapy are the first lines of treatment for MDD. However, around one-

third of patients failed to respond to these treatments and were identified as treatment-resistant MDD 

patients [4]. Electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) are 

considered non-pharmacological treatments for drug-resistant MDD patients. ECT has anesthesia risk, 

memory changes, and social stigmatization, whereas the rTMS is less invasive and painful than the ECT 

[5-7]. The rTMS is based on the patient's and treatment procedure stimulation parameters such as coil's 

shape, intensity, frequency, train duration, and inter-train interval, applied a series of magnetic pulses to 

the cerebral cortex. These magnetic pulses can modulate the neuronal activity of target points [8]. rTMS 

can change brain activity according to its frequency: high frequency (HF) (usually ≥ 10 Hz) is used to 

stimulate the target point, whereas low frequency (LF) (usually ≤ 1 Hz) inhibits the target point. [9]. Due 

to the left hypoactivity and right hyperactivity dorsolateral prefrontal cortex (DLPFC) in MDD patients, 

HF rTMS and LF rTMS are applied to the left and right DLPFC, respectively [10, 11]. Recent studies 

indicated that the outcome rate of rTMS treatment in people with MDD is about 50-55% [12, 13]. 

According to the fact that the rTMS treatment period is long (about 20 sessions) and the costs on 

healthcare systems are high, predicting the response to treatment through a personalized medicine 

approach is necessary and helps clinical decisions [14].  

Currently, the prescription of rTMS treatment is based on clinical evaluation and lacks sufficient 

accuracy to predict the rTMS treatment outcome, especially before starting the treatment [15]. In one 

study, demographic indicators, depressive characteristics, and medicinal history were used as clinical 

predictors, and results demonstrated that MDD patients who are younger and show less refractory to 

medication have a better response to the rTMS treatment [16]. Another study, in addition to age, 

examined the effects of gender, menopausal status, and ovarian hormone levels in women. It was shown 

that there was no difference in rTMS response between men and premenopausal women (68.8% and 

70.6%, respectively). Besides, the rTMS treatment outcome in postmenopausal women is low. The 

regression analysis has indicated that menopause and ovarian steroid levels play a key role in the rTMS 

treatment outcome in women [17]. In one study, Rostami et al. evaluated clinical and demographic data. It 
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has resulted that patients who showed better cognitive-emotional symptoms responded better to rTMS 

treatment than the somatic symptoms [18]. As observed in these studies, the use of clinical data, due to 

the MDD patients' differences in individual characteristics and brain structures, does not have sufficient 

accuracy in predicting the rTMS treatment outcome. 

The search for biomarkers to predict the rTMS treatment outcome in MDD patients has expanded 

on neuroimaging methods based on electroencephalogram (EEG). EEG is widely used in clinical 

decisions and can lead to the identification of effective biomarkers due to many advantages, including 

ease of use, sufficient temporal resolution, non-invasiveness, and accessibility in the clinic [19, 20]. 

Several linear and nonlinear measures from EEG signals have been proposed as predictors of the rTMS 

treatment outcome in patients with drug-resistant MDD. In one study, nonlinear EEG features including 

Lempel – Ziv Complexity (LZC) and Largest Lyapunov Exponent in alpha frequency band were used. 

Non-responders indicated a significant decrease in LZC, while responders showed an increase in LZC 

[21]. In another study, MDD patients were classified into responder and non-responder for rTMS 

treatment using feature selection of EEG signals based on a genetic algorithm and an artificial neural 

network [22]. In other studies, additional features such as Permutation Entropy [15], Katz fractal 

dimension, and correlation dimension [23] were extracted from EEG signals and investigated to predict 

the rTMS treatment outcome in drug-resistant MDD patients. These methods contribute to analyzing the 

complexity of EEG signals, but the EEG signal is non-stationary, and these methods have limitations in 

estimating accurate temporal patterns.  

Using neuroimaging techniques, it has become clear that a single EEG channel cannot represent 

complicated neurophysiological changes in psychiatric disorders. Recent research has indicated that the 

human brain is a complex integrated network consisting of the brain’s areas interconnected to form 

subnets of the brain. Examining these networks can provide a new perspective on how the brain works. 

Consequently, understanding the brain’s neural dynamic patterns and behavior provides the best features 

to predict rTMS treatment response. Complex interactions across brain regions can be described through 

two categories of brain connectivity measures: functional, and effective [24]. Functional connectivity 

indicates only coordinated activity and statistical dependency between brain areas, while effective 

connectivity provides information about the causal relationship between brain areas [25]. Granger 

Causality (GC) is widely used to estimate the effective brain connectivities which characterize the 

directed information flow and causal interaction between time-series of EEG signals. Graph theory 

methods are often used for quantitative analysis of brain connection. Graph theory is a theoretical 

platform to examine complex networks like the brain, which can provide valuable information about the 

local organization of the functional brain networks [26].  
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The novelties of the current study are the use of effective brain connectivity measures by pre-

treatment EEG signals to estimate the graph theory indices, which helps to identify the brain's complex 

networks and its best patterns to find significant biomarkers between two groups of responder and non-

responder MDD patients. These will lead to a decrease in the time and cost of the patients before starting 

the rTMS treatment.  

Materials and methods 

Participants and Clinical assessment 

 The EEG Data were recorded at the Atieh Clinical Neuroscience Center from 34 MDD patients 

with refractory to medication (mean age 37.1, standard deviation = 13.4, 25 women) who were referred to 

rTMS treatment. An experienced psychiatrist with a structured clinical interview for Axis I DSM-IV [27] 

made the diagnosis of MDD, and the patient was subjected to a baseline clinical assessment that 

confirmed the Beck Depression Inventory (BDI-II) score [28]. The BDI-II is an inventory of twenty-one 

self-report questions dealing with the status of the subjects in their past week. Each question consists of 

four answers ranging in intensity. All MDD patients received 20 sessions of rTMS treatment, three 

sessions per week, in the right DLPFC area of the brain. BDI score for all MDD patients was assessed one 

week before rTMS treatment and after 20 sessions of rTMS. A reduction of at least 50% of the total BDI 

score is defined as the rTMS treatment outcome. In the current study, all participants' written consent has 

been obtained and authorized by the Shahid Beheshti University of Medical Sciences ethics committee. 

The demographic data and clinical characteristics of participants have been summarized in Table 1. 

rTMS treatment parameters 

 Atieh Clinical Neuroscience Center is utilized a Neuro MS rTMS device (Neurosoft, Russia) for 

patients referred to the rTMS treatment. Magnetic pulses are delivered through a 70 mm stimulation coil 

(air film coil). Each patient's motor threshold is defined as the lowest intensity needed to stimulate the 

motor cortex that is caused a contraction of the Abductor Pollicis Brevis (APB) muscle in at least 5 out of 

10 attempts. The coil position is defined as 5 cm anterior along a parasagittal line from the site of 

optimum APB stimulation. All patients received the LF-rTMS protocol. In this protocol, stimulation was 

delivered over the right DLPFC, at 120% of the resting motor threshold, for 10 s 1-Hz with 2 s intervals. 

This procedure is repeated 200 times (2000 pulses) per session (40,000 pulses over 20 sessions). 
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Pre-treatment EEG acquisition 

 All EEG signals were recorded in the resting state with closed eyes condition for 300 seconds 

with 19-channel of Ag/AgCl electrodes (Mitsar-EEG 201 machine). The position of the electrodes was 

according to the 10-20 standard (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, 

and O2) and the sampling rate of recorded EEG signals was 250 Hz. 

EEG pre-processing 

 The EEGLAB open-source toolbox [29] has been used to preprocess and remove the 

environmental and movement noise from EEG data. At first, a high-pass filter (1 Hz) filtered EEG signals 

to remove the baseline drift. EEG signals were re-referenced by the average reference. The CleanLine 

open-source plugin [30] in the EEGLAB toolbox has been used to remove the line noise from EEG signal 

channels. The CleanLine plugin uses a sliding window to estimate sine wave amplitude to decrease, and 

in comparison with a notch filter, it does not make a hole in the EEG spectrum. EEG data were cleaned 

visually by the “reject continuous data by eye” section to remove the motion artifacts (that existed in all 

channels). After relative cleanliness, Independent Component Analysis (ICA) was utilized to clean the 

data from blinking and head movements. In the end, to unify the data, we hold 150 seconds of all 

subjects. 

 

Effective Connectivity 

Effective connectivity provides information on the causal interaction relationship between time-

series of EEG signals and characterizes the directed information flow [25]. Effective connectivity is 

extracted by the SIFT open-source plugin [31] in the EEGLAB toolbox. The Granger Causality (GC) is 

widely used to calculate effective brain connectivities. The directed transfer function (DTF) is a GC-

based scale defined in the frequency domain and could compute based on a multivariate autoregressive 

model (MVAR) [32]. For an 𝑋(𝑡) as 𝑘-channel multivariate time series, it obtains: 

𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑘(𝑡) 

𝑋(𝑡) = ∑ 𝐴(𝑗)𝑋(𝑡 − 𝑗) + 𝐸(𝑡)

𝑝

𝑗=1

 

Coefficients of  𝐴 and 𝐸(𝑡) are 𝑘 × 𝑘 -sized matrices and 𝑘 -size vectors, respectively. Then the model is 

transformed into a multivariate autoregressive in the frequency domain to obtain the system transfer 

matrix: 

(2) 

(1) 
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𝐸(𝑓) =  𝐴(𝑓)𝑋(𝑓) 

𝑋(𝑓) = 𝐴−1(𝑓)𝐸(𝑓) = 𝐻(𝑓)𝐸(𝑓) 

𝐻(𝑓) = ( ∑ 𝐴(𝑚)𝑒−2𝜋𝑖𝑚𝑓𝛥𝑡

𝑝

𝑚=0

)

−1

 

The filter coefficients matrix 𝐻(𝑓) is known as the system transfer matrix. The transfer matrix 

makes it possible to find cross-spectra and partial coherences: 

𝐶𝑖𝑗(𝑓) =  
𝑀𝑖𝑗(𝑓)

√𝑀𝑖𝑖(𝑓)𝑀𝑗𝑗(𝑓)
 

𝐹𝑖𝑗
2(𝑓) =  

|𝐻𝑖𝑗(𝑓)|
2

∑ ∑ |𝐻𝑖𝑚(𝑓)|2𝑘
𝑚=1𝑓

 

Where 𝐶𝑖𝑗
 (𝑓) is partial coherence and 𝑀𝑖𝑗 is a minor of the spectral matrix, and the DTF modification 

(𝐹𝑖𝑗
2(𝑓)) concerned the function normalization to make the denominator independent of frequency. The 

dDTF (𝜒𝑖𝑗
 (𝑓)) indicates direct propagation from channel j to i: 

𝜒𝑖𝑗
2 (𝑓) =  𝐹𝑖𝑗

2(𝑓)𝐶𝑖𝑗
2 (𝑓) 

 

There exists a direct causal relation between channels 𝑗 → 𝑖 when both functions 𝐹𝑖𝑗
2(𝑓) and 𝐶𝑖𝑗

2 (𝑓) are 

non-zero. So, the dDTF method has compensated for the lack of other effective connectivity by 

combining the advantages of DTF and partial coherence methods and has indicated more reliable 

effective connectivity. 

Graph analysis 

 Graph theory analysis has been used to obtain a new perspective on complex networks such as the 

brain. The brain nervous system is a complex network, and it can be modeled in the form of a graph. The 

EEG channels (brain regions) are defined as nodes, and the edges represent the brain connections 

calculated by the dDTF method. Then, brain function based on graph indices can be assessed [33]. For 

each obtained graph, the local indices have been calculated [33, 34]. The first index is degree; the node's 

degree represents the number of neighbors connected to the given node. This index can be computed 

inward and outward links as in-degree and out-degree, respectively. Each edge (link) has a weight that 

indicates whether the connection is strong or weak. Strength is the sum of all neighboring link weights. 

Furthermore, the strength of nodes can be computed inward and outward links as in-strength and out-

strength. Another important graph-based index is the centrality, which makes it possible to assess the 

(5) 

(3) 

(4) 
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node’s importance interactions with other nodes [35]. Betweenness centrality calculates these types of 

nodes and demonstrates the fraction of all shortest paths in the network that pass across a given node. 

Graph-based indices are calculated using functions implemented in the BCT open-source toolbox [33]. 

 Statistical analysis 

 The statistical analysis assesses the significance of the extracted features. The current study has 

used the Wilcoxon rank-sum test to examine the sample independence of the two groups [36]. The area 

under the receiver operating characteristic curve (AUC-ROC) has been used to evaluate the performance 

of two group classification algorithms to select the best features.  [37].  

Overview of the proposed method 

 The proposed method's block diagram has summarized in Figure 1. First, the raw EEG data will 

be processed using the EEGLAB open-source toolbox. The pre-processing block utilizing to remove the 

environmental and subject artifacts to extract the pure brain activity, including frequency filtering and line 

noise cancellation, artifacts removal, ICA (to remove blinking and head movements), and time correction. 

Then, the effective brain connectivity between 19 EEG signal channels is calculated using the dDTF 

method in all frequency bands of the delta, theta, alpha, beta, and gamma and used as the extracted feature 

using the SIFT plug-in [38] in the EEGLAB toolbox. The connectivity matrix (dDTF) is 19 × 19 per 

patient. In the following, brain function is modeled as a graph by the dDTF method and examined with 

the local graph theory indices such as degree, out-degree, in-degree, strength, out-strength, in-strength, 

and betweenness centrality. Finally, the Wilcoxon rank-sum test (p-value) and AUC-ROC utilizing to 

identify the best indices and significant biomarkers to predict the rTMS treatment outcome in MDD 

patients with drug-refractory. 

Results 

Each EEG data after pre-processing were segmented to a window length of 10 seconds. The 

dDTF values indicate a causal relationship between different brain areas based on parameters of MVAR 

model. The dDTF brain connectivity features have been extracted in the delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-40 Hz) frequency bands, separately. The MVAR model 

parameters have been selected according to autocorrelation function and portmanteau tests (model order = 

12). Autocorrelation function and portmanteau tests have been used to pass the order selection criteria 

(whiteness, consistency, and stability). The dDTF method calculated the connectivity matrix by 10-

second windows, and the mean values of the 15 windows (150-second) from the whole signal were 

assigned as a connectivity matrix for each patient. Then, the brain is modeled as a graph so that nodes 
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represent EEG channels (brain regions) and edges represent the brain connections determined by the 

dDTF method. Figure 2 illustrates the normalized mean values of brain connectivity matrices and the 

causal relationship between different brain areas calculated by dDTF method for responding and non-

responding MDD patients in delta, theta, alpha, beta, and gamma frequency bands separately.  

Then, the brain function is examined with the graph theory indices using the embedded functions 

in the BCT open-source toolbox. Local indices including degree, out-degree, in-degree, strength, out-

strength, in-strength, and betweenness centrality have been calculated for each obtained graph. Graph 

theory indices for each node (EEG channels) have been calculated for all frequency bands at different 

thresholds (for example, at the 70% threshold, 30% of the weakest connections in the brain connectivity 

matrix has been removed). The Wilcoxon rank-sum test (p-value) and the AUC-ROC have been used to 

identify the best indices that predict the rTMS treatment outcome. The results of this process, including 

the mean and standard deviation value of the graph theory indices for responder versus non-responder 

MDD patients for each frequency band with the highest AUC-ROC have been reported in Table 2 

separately. In other words, each graph theory index has been calculated at different nodes and thresholds, 

and the best one based on the highest AUC-ROC has been reported in Table 2. For example, in 

Betweenness centrality at the delta band, node Fp2 at the threshold of 0.7 has the highest AUC-ROC 

(0.85) and P-value (<0.001). Also, the best graph theory indices for all frequency bands based on AUC-

ROC have been reported in table 3. According to Table 2, graph theory indices have the highest AUC-

ROC values in delta and theta bands. By examining the AUC-ROC values of graph theory indices, it is 

distinguished that the degree, strength, and betweenness centrality, in the delta frequency band and in-

degree, out-strength, and in-strength, in the theta frequency band, have the highest AUC-ROC values. 

Also, by assessing the most notable brain areas, the Fp2 node has the highest AUC-ROC values (Table 2, 

3). According to Table 2, degree, strength, out-degree, out-strength, and betweenness centrality in the Fp2 

area has the highest AUC-ROC values. The Fp2 area is a source of information for this target, and 

therefore out-degree and out-strength indices have higher AUC-ROC values than in-degree and in-

strength indices. In Table 3, out of the eighteen highest rated indices, fourteen indices were in the Fp2 

area as the best brain areas to predict the rTMS treatment outcome. Finally, from the graph theory indices 

perspective, the betweenness centrality has the highest AUC-ROC values (Table 2, 3). In summary, with 

the assessment of all graph theory indices, the betweenness centrality in the Fp2 area and the delta 

frequency band has the highest AUC-ROC value of 0.854 and P-value < 0.001 in the threshold of 0.7.    
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Discussion 

 An effective brain connectivity and graph theory criteria have been used in current study to 

predict the rTMS treatment outcome in MDD patients with drug-refractory. We calculated most local 

graph theory indices and indicated the prefrontal region, especially the Fp2 area in the delta frequency 

band, was a critical brain region for this aim.  

 The dDTF method provides the best effective brain connectivity. This method calculates direct-

directed connections and excludes indirect and false connections from the connectivity matrix, unlike the 

Granger-Geweke causality. This method is one of the multivariate methods based on multi-channel AR 

models that can identify the causal relationships between signals and determine the direct flow of activity 

between time series. The definition of dDTF measure in the frequency domain allows us to study the role 

of different EEG rhythms in information processing. Also, the DTF method has based on the phase 

difference between the time series, so it is insensitive to the effect of volume conductance and robust to 

noise. Due to the mentioned advantages of the dDTF method, it can conclude that the dDTF method used 

in this study provides the best effective brain connectivity. Also, physiological evidence shows their 

efficiency in other brain studies [39]. 

 Among all calculated graph theory indices, the betweenness centrality index in the Fp2 area and 

the delta frequency band have the highest AUC-ROC value (Table 2, 3). The betweenness centrality 

indicates the node that connects different parts of the network that is characterized usually by a high 

centrality. Thus, an area with the highest betweenness centrality mediates the connection of nodes in other 

brain areas. Therefore, each node with the highest betweenness centrality is more active than the others. 

The more activity in prefrontal regions in the delta and theta band, especially the Fp2 area in the delta 

frequency band, indicated the most significant biomarker. 

Out-degree and out-strength indices have the highest AUC-ROC value after the betweenness 

centrality index. These indices represent the source of information and identify the area that is the cause 

of information flow in the brain network. In Figures 2 and 3, the individual node that sends the highest 

values of brain connectivity has the highest out-degree and out-strength values. A high AUC-ROC value 

in out-degree and out-strength indicates significant differences between two groups of responders and 

non-responders to the rTMS treatment. Prefrontal region in the delta and theta band and in particular the 

Fp2 region in the delta band is the source of information, which is expressed by higher differences 

between out-degree and out-strength indices, corresponding to higher AUC-ROC values, in two groups 

for this target. Other indices such as in-degree and in-strength indices specify the network nodes where 

information flow is imported from other areas. Table 2 indicates that only the T8 node has this property, 



 

12 

 

but since it has a low AUC-ROC value; thus, it is not considered to be an effective biomarker. 

Consequently, considerable information for distinguishing between responder and non-responder MDD 

groups is available in the prefrontal region, especially in the Fp2 area. Other brain regions are less 

involved in this type of disorder. Graph theory indices of this region have significant differences in the 

delta and theta frequency bands that have been used as one of the rTMS treatment outcome predictors in 

patients with drug-resistant MDD. 

 The obtained results from graph theory indices indicated that the greatest differences between 

indices were observed in delta frequency band, and that the significant differences between indices were 

found in theta and beta frequency bands and suitable biomarkers for distinguishing between responder 

and non-responder groups to rTMS treatment in MDD patients (Tables 2 and 3). As in previous studies 

[40-42], the indices calculated in delta and theta frequency bands have shown higher efficiency than other 

frequency bands to classify the two groups. The considerable changes in connectivity in delta and theta 

frequency bands in the frontal cortex of MDD patients can be explained from a neurobiological point of 

view using theta current density in the rostral anterior cingulate cortex (rACC) [43-45]. This region is the 

cause of the response to different types of medication for depression. The rACC is the hub in the brain 

default network and is associated with self-focused processing. Besides, the rACC resting-state activity 

affects rumination, memory, and planning [46]. Reflective pondering and brooding are rumination's 

essential elements and are a mechanism for distress responding. Increasing the rACC activity may lead to 

less self-focused and better response to the treatment due to adaptive self-referential functions. Also, the 

MRI data in depressed patients indicated better functional connectivity discrimination in the rACC than in 

the other brain regions[47]. 

For future work, it is suggested to use more EEG channels and calculate more graph theory 

indices, then use feature selection methods and machine learning and deep learning methods to classify 

the MDD patients who respond to the rTMS. 

Conclusion 

 The aim of this study is to investigate the significant biomarkers that can be used to obtain the 

rTMS treatment response in drug-resistance MDD patients. Personal medicine approaches will reduce the 

cost of treatment and increase the treatment method's effectiveness in psychiatric disorders. With the 

assessment of several graph theory indices, it is shown that the Fp2 region plays the most significant role 

in the prediction of the rTMS treatment response in drug-resistance MDD, especially the betweenness 

centrality in Fp2 and the delta frequency band is the best and has the highest AUC value of 0.854.  
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Table 1. Demographic and clinical characteristics of participants 

 Responder 

(n = 17) 

Non-responder 

(n = 17) 

Total 

(n = 34) 

Gender(Female/Male) 14/3 11/6 25/9 

Age 34.8(±12) 39.3(±14.7) 37.1(±13.4) 

Pre-treatment BDI 31(±10.3) 31.2(±10.4) 31.1(±10.2) 

Post-treatment BDI 9.4(±5.5) 23.2(±11.8) 16.3(±11.4) 
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Table 2. Mean and standard division value of the graph-based indices (in-degree, out-degree, degree, in-strength, 

out-strength, strength, and betweenness centrality) for responder versus non-responder MDD patients for each 

frequency band with the highest AUC-values in the different nodes and threshold.  

Graph indices Delta Theta Alpha Beta Gamma 

In-degree 

Node = C3 

9.18±3.88 vs. 

7.06±4.71 

AUC = 0.6505 

P* = 0.1082 

Th* = 0.6 

Node = T8 

8.41±3.08 vs. 

5.76±3.23 

AUC = 0.7163 

P = 0.0146 

Th = 0.3 

Node = T8 

8.53±2.12 vs. 

6.53±2.48 

AUC = 0.6332 

P = 0.0461 

Th = 0.5 

Node = P4 

5.59±3.12 vs. 

3.89±2.50 

AUC = 0.6401 

P = 0.0826 

Th = 0.3 

Node = T8 

10.41±5.78 vs. 

7.71±6.59 

AUC = 0.6228 

P = 0.1236 

Th = 0.3 

 

Out-degree 

Node = Fp2 

13.06±4.88 vs. 

6.35±5.43 

AUC = 0.7889 

P = 0.0017 

Th = 0.3 

Node = Fp2 

16.00±2.74 vs. 

11.12±5.29 

AUC = 0.7785 

P = 0.0019 

Th = 0.5 

Node = Fp2 

9.71±5.98 vs. 

3.59±5.41 

AUC = 0.7751 

P = 0.0026 

Th = 0.3 

Node = Fp2 

5.24±4.72 vs. 

1.88±3.72 

AUC = 0.7958 

P = 0.0011 

Th = 0.1 

Node = P3 

12.24±3.13 vs. 

8.29±3.93 

AUC = 0.7543 

P = 0.0035 

Th = 0.6 

Degree 

Node = Fp2 

24.65±4.95 vs. 

17.71±7.08 

AUC = 0.7751 

P = 0.0052 

Th = 0.3 

Node = Fp2 

20.41±3.89 vs. 

16.76±5.09 

AUC = 0.7197 

P = 0.0155 

Th = 0.4 

Node = Fp2 

11.65±4.81 vs. 

7.12±4.64 

AUC = 0.7197 

P = 0.0153 

Th = 0.3 

Node = P3 

28.47±3.64 vs. 

24.29±3.80 

AUC = 0.7578 

P = 0.0039 

Th = 0.7 

Node = P8 

23.18±5.31 vs. 

19.65±6.23 

AUC = 0.6713 

P = 0.0646 

Th = 0.6 

 

In-strength 

Node = C3 

3.20±1.68 vs. 

2.73±2.27 

AUC = 0.6332 

P = 0.1906 

Th = 0.5 

Node = F7 

3.01±1.26 vs. 

2.05±0.87 

AUC = 0.7405 

P = 0.0175 

Th = 0.2 

Node = Fz 

2.00±0.69 vs. 

1.41±0.78 

AUC = 0.7266 

P = 0.0252 

Th = 0.1 

Node = P4 

3.19±2.03 vs. 

2.18±1.47 

AUC = 0.6540 

P = 0.1253 

Th = 0.3 

Node = T8 

5.17±3.42 vs. 

4.23±4.36 

AUC = 0.6332 

P = 0.1906 

Th = 0.3 

 

Out-strength 

Node = Fp2 

6.43±3.67 vs. 

2.79±3.42 

AUC = 0.7958 

P = 0.0034 

Th = 0.2 

Node = Fp2 

9.54±2.64 vs. 

5.91±3.69 

AUC = 0.8097 

P = 0.0022 

Th = 0.5 

Node = Fp2 

6.80±4.05 vs. 

3.01±3.86 

AUC = 0.7889 

P = 0.0042 

Th = 0.4 

Node = Fp2 

3.70±3.75 vs. 

1.38±2.88 

AUC = 0.7993 

P = 0.0014 

Th = 0.1 

Node = Fp2 

4.12±3.00 vs. 

1.88±1.81 

AUC = 0.7751 

P = 0.0065 

Th = 0.1 
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Strength 

Node = Fp2 

11.33±2.90 vs. 

8.04±4.07 

AUC = 0.7578 

P = 0.0108 

Th = 0.2 

Node = Fp2 

12.17±3.07 vs. 

9.42±3.63 

AUC = 0.7197 

P = 0.03 

Th = 0.4 

Node = Fp2 

8.10±3.54 vs. 

5.27±3.26 

AUC = 0.7578 

P = 0.0108 

Th = 0.4 

Node = Fp2 

5.98±3.82 vs. 

3.90±3.67 

AUC = 0.7232 

P = 0.0275 

Th = 0.2 

Node = P3 

5.50±4.42 vs. 

3.77±2.91 

AUC = 0.6367 

P = 0.1792 

Th = 0.3 

 

Betweenness 

centrality 

Node = Fp2 

27.2±8.74 vs. 

14.93±11.97 

AUC = 0.8547 

P = 0.0004 

Th = 0.7 

Node = Fz 

2.19±1.65 vs. 

1.23±1.06 

AUC = 0.6782 

P = 0.0790 

Th = 0.9 

Node = P8 

3.50±2.09 vs. 

1.94±1.37 

AUC = 0.7301 

P = 0.0220 

Th = 0.9 

Node = P3 

19.17±31.15 vs. 

2.54±3.77 

AUC = 0.8166 

P = 0.0013 

Th = 0.5 

Node = Cz 

2.53±1.64 vs. 

1.07±1.73 

AUC = 0.8097 

P = 0.0022 

Th = 0.9 

P*: p-value, Th*: Threshold 
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Table 3. The ranked highest graph theory indices for all frequency bands based on AUC-values. 

Graph indices Frequency Band Node AUC-ROC 

value 

P-value Threshold 

Betweenness centrality Delta Fp2 0.8547 0.0004 0.7 

Betweenness centrality Delta Fp2 0.8512 0.0005 0.8 

Betweenness centrality Beta P3 0.8166 0.0013 0.5 

Betweenness centrality Gamma Cz 0.8097 0.0022 0.9 

Out-strength Theta Fp2 0.8097 0.0022 0.5 

Betweenness centrality Delta Fp2 0.8062 0.0024 0.6 

Betweenness centrality Beta P3 0.7993 0.0031 0.9 

Out-strength Theta Fp2 0.7993 0.0031 0.6 

Out-strength Beta Fp2 0.7993 0.0014 0.1 

Betweenness centrality Beta P3 0.7993 0.0031 0.9 

Out-strength Theta Fp2 0.7958 0.0034 0.7 

Out-degree Beta Fp2 0.7958 0.0011 0.1 

Out-strength Delta Fp2 0.7958 0.0034 0.2 

Out-strength Delta Fp2 0.7958 0.0034 0.3 

Out-strength Delta Fp2 0.7958 0.0034 0.4 

Out-strength Theta Fp2 0.7924 0.0038 0.8 

Betweenness centrality Delta Fp2 0.7924 0.0038 0.5 

Betweenness centrality Delta Fp2 0.7924 0.0038 0.3 
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Figure 1. The proposed method's block diagram. First, the recorded raw EEG data from drug-resistant MDD 

patients are pre-processed, then by using the dDTF method, the brain connectivity matrix is calculated for each 

patient. In the following, the brain function is modeled as a graph by the dDTF method and analyzed with the local 

graph theory indices. Finally, the statistical test (Wilcoxon rank-sum) and the area under the ROC curve has used to 

determine the significant biomarkers for predicting the rTMS treatment outcome. 
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Figure 2. The normalized brain connectivity matrix has been calculated by the dDTF method from EEG signals in 

two groups of responder and non-responder MDD patients to rTMS treatment in the delta, theta, alpha, beta, and 

gamma frequency bands. The colors of the matrix indicate the strongness or weakness of the connection. 


