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Abstract 

The neural oscillations or brain waves refer to repetitive neural activities in the central nerves 

system. It is believed that brain processes the information though converging and diverging of 

these neural oscillations. The neural oscillatory pattern changes during the development and it has 

been reported that follows a specific trend during a typical development. Nevertheless, it is largely 

unknown whether this pattern would be differentiable in neurodevelopmental disorders. In this 

study, we aimed to explore developmental pattern of changes in the typically developed children 

with the age matched epileptic children. Therefore, eyes-open resting state EEG of epileptic and 

healthy children were acquired. Subsequently, changes in power spectrum of clean segments of 

EEG activities (with no seizure and removed from artifacts) in two groups were statistically 

compared in the age children within the ranges of 6-9 and 9-12 years-old. The results only showed 

significantly lower activities at the superior frontal and central regions in the frequency range of 

1-4 Hz in epileptic children. We hope this finding could help to pave the way for better 

understanding of epilepsy effect on the brain development. 

Keywords: Electroencephalography, Neurodevelopment, Power spectrum, Children 
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Introduction 

Studying developmental pattern of changes in brain structure and functions has been area of 

research interest for many years (Sporns, O., 2014). Researchers are increasingly interested in 

understanding the procedures and factors that shape and happen in a healthy brain and its typical 

changes during a normal development. They believe such a pattern will help to recognize and 

prognose the abnormal brain developments such as neurodevelopmental disorders, and may help 

to find a clues on how the brain could be treated. Undoubtedly, most of changes occur during the 

infancy period and is followed by significant changes in the childhood and these changes are 

gradually decreased by growing up (Donald F. Huelke., 8991). Therefore, it seems necessary to 

investigate the normal growth pattern and its changes in neurodevelopmental disorders. However, 

as far as we know, there is limited information about the typical developmental pattern in children 

with epilepsy. 

In this regard, advanced neuroimaging technologies can help us measure and track topographical 

changes in brain networks. Various types of neuroimaging technics could be implied that among 

them electroencephalography (EEG) because of its low running cost, and good temporal resolution 

could be a practical choice. In addition, it is believed that information processing in the brain is a 

product of convergence and divergence of the neural oscillations (Hermann BP., 2002). As a result, 

knowing the pattern of changes in brain waves during development helps to understand diseases. 

On the other hand, it is not well recognized whether pattern of developmental changes in epileptic 

children is similar to the typically developed children or not (Stam, C.J., Nolte., 2007). Given that 

epilepsy is one of the most common and important neurodevelopmental problems. (Lebel, C., 

2008). Since in epilepsy, changes in the electrical activity of the brain cause sudden changes in 

behavior, we hypothesized that seizures occur only at a moment in time and have no long-term 

effects. Our aim is to show that epilepsy disorder may have an effect on the pattern of 

neurodevelopmental changes. For this purpose, using a cross sectional study we compared changes 

of the brain waves in various regions of the brain in a group of epileptic children with an age and 

gender matched typical developed children as is explained in the following section.  
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Methodology  

The implementation of the study includes three basic parts including signal recording, required 

preprocessing and feature extraction, and modeling; each of which is fully described below. Figure 

1 shows a diagram of the steps of the proposed method. 

 

 

 

Figure 1. Experimental paradigm 

 

Participants  

In this study, electroencephalographic signals were recorded from 57 children with epilepsy and 

57 age and gender matched typically developed children. Typically developed children did not 

have any neurological disorders or other illnesses and did not take any medication. These children 

aged from 6 to 12 and participated in the study by their parents’ or care givers’ consent. Children 

with epilepsy were diagnosed with epilepsy by a pediatric neurologist based on clinical interview 

and examination using EEG. All participants were resting in a quiet environment while recording 

of the signal was performed. The experiment was conducted in accordance with ethical principles 

for medical research as stated in the Helsinki declarations and it was approved by the ethical 

committee of the Institute for cognitive science studies with the IRB code of 

IR.IUMS.REC.1401.495. 

 

 

Table1. Demographics of the participants 

Number 
Groups of patients with epilepsy  Groups of Normal 

Sex Hand Sex Hand 

57 Boy/ Girl R/L Boy/ Girl R/L 

 

 

EEG 

Recording 

Preprocessing 

(segmentation, and 

noise removal) 

Feature Extraction 

Wavelet  transform for δ, 

θ, α, β, γ bands 

Modeling and 

statistical 

analysis 
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EEG Data Recording  

Prior to the data recording, participants were informed of the procedure and an agreement was 

taken upon by their parents. A Nihon Kohden amplifier with a 28-electrode cap was used to record 

the EEG signal. Signal acquisition was done for 57 healthy children while their eyes were open 

during 60 minutes of  Long-Term Monitoring at the Department of  Neurology, Children’s Medical 

Center. The use of PEMU (Pediatric EEG Monitoring Usage) is to determine the nature of seizures 

in children as well as to determine its focus to take preoperative measures for epilepsy surgery 

(Figure 2). This ward includes a double room for patients and technicians and a room for Pediatric 

neurologist. The patient’s room is equipped with two cameras for live imaging of the patients and 

an EEG device recording with 28 channels. In this room, the nurse and the patient's companion 

have the opportunity to report suspicious activity of the patient live. In this room, the nurses can 

watch a live ECG as well as a video of the patient. The doctor's room includes a server computer 

with the ability to store data for a long time and a computer equipped with one of the most advanced 

systems available. Using this software, the doctor is able to review the images and data of the 

electroencephalogram online and offline and prepare the final report (Figure 3). 

 

 

 

 

 

 

 

 

Figure 2. Long-Term Monitoring Room                      Figure 3. A view of the EEG recorded 

 

Signal Analysis and Preprocessing  

Signals related to each person have been recorded for an hour in the mentioned state and then, the 

parts which had the least amount of noise were selected from the artifact free signals. Specially, 
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ocular and motion artifacts and electromyograms were removed by a skilled operator supervised 

by neurologist. For initial signal preparation, the artifact effect and the city electrical interference 

were removed through the software. The information of 28 EEG electrodes that were available in 

an array form was converted to be readable in MATLAB. The EEG signals were then filtered in 

the range of 0.1 to 70 Hz using a FIR filter.  

Feature Extraction 

Extracting appropriate features from electroencephalographic signals is of special importance. By 

choosing these features correctly and paying attention to the presented model, we can show better 

function of the brain. In this study, energy of EEG signal was calculated by wavelet transform, at 

the conventional frequency bans including δ, θ, α, β, γ bands, and finally the obtained values were 

given to the proposed model as input.  

Wavelet is a set of mathematical functions used to decompose a continuous signal into its 

frequency components, and the resolution of each component equals its scale. Considering the 

better performance and discrimination of wavelet transform in epilepsy activity than short time 

Fourier transform, We use discrete wavelet transform to extract the features of the signals ( Liu, 

Y., 2012).  EEG signal is divided to sub frequency bands as is shown in Table 2. 

Table 2. Different Sub frequency bands for decomposition of EEG signals 

 

Frequency Range (Hz) Frequency Bands Frequency Bandwidth (Hz) 

1-4 Δ 1 

4-8 θ 4 

8-10 𝛼1 8 

10-12 𝛼2 10 

12-15 β1 12 

15-18 β2 15 

18-25 β3 18 

25-30 β4 25 

30-40 ϒ 30 

 

A discrete wavelet transform is used to analyze the signal at different frequency bands with 

different resolutions, by decomposing the signal into cumulative estimation (C j,k) and detailed 

estimation (d j, k). These coefficients are calculated by equation 1 and 2. 
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𝐶𝑗,𝑘 = ∫ 𝑓(𝑡) 2−𝑗 2⁄ ∅(2−𝑗𝑡 − 𝑘)𝑑𝑡                      1 

𝑑𝑗,𝑘 = ∫ 𝑓(𝑡) 2−𝑗 2⁄ 𝜓(2−𝑗𝑡 − 𝑘)𝑑𝑡                      2 

∅(𝑡) indicates the basic scaling, ψ(t) indicates mother wavelet, k indicates translation parameter 

and j indicates scale index. Inverse discrete wavelet transform is calculated by equation 3. 

 𝑓(𝑡) = ∑ 𝐶𝑗,𝑘𝐾 2−𝑗 2⁄ ∅(2−𝑗𝑡 − 𝑘) + ∑ 𝑑𝑗,𝑘𝐾 2−𝑗 2⁄ 𝜓(2−𝑗𝑡 − 𝑘)                    3 

 

In signal processing, the total energy of the discrete time signal x [n] at distance n1≤n≤ n2 is 

defined as: 

𝐸(𝑙) = ∑ 𝑑𝑖
2 × 𝑇 𝑁                          4⁄

𝑁

𝑖=1

 

 

So that N is the number of di coefficients on the scale l and T is the sampling interval. In this study, 

to calculate the energy, the related energy of each subband is used. The associated energy 

calculates the signal strength at each time interval. The associated signal energy 𝐸𝑟(𝑙) is calculated 

by equation 5. 

𝐸𝑟(𝑙) = 𝐸(𝑙) ∑ 𝐸(𝑖)                    5

𝑆

𝑖=1

⁄  

S is the number of wavelet scales. 

Examining frequency bands separately plays an important role in obtaining high quality results. 

The choose of frequency bands has been done based on the results of Power spectrum analysis.  

Using fast Fourier transform (FFT), the power of the EEG signal spectrum is converted to 

frequency from time frame. By calculating the ratio of the power spectrum of each frequency band 

to the total power of 1 to 40 Hz and the frequency separation of 0.001 Hz, the relative spectrum 

power of all 28 channels is obtained. The paradigm of power spectral analysis based on frequency 

changes in frequency bands described at the Table2 were selected for the further analysis (P. 

Samimi sabet., 2019).  
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Statistical analysis 

After performing a normalization test of Kolmogorov Simronov, analysis of variance with a post 

hoc of t were implied on the power spectrum features. The power spectrum was calculated with a 

frequency resolution of 1 Hz, and for each frequency the band comparisons have been made 

separately.  

Results 

Power spectrum of resting state EEG data of epileptic and typically developed children were 

statistically compared at the age range of 6-9, and 9-12 separately. Average of EEG power spectral 

in each group and the t value of their comparisons are presented in Figure3. Results of each 

frequency band is presented separately in the figure.  

Comparison between epileptic and normal children at the age of 6-9  

As presented if Figure3, smaller lower frequency activities were observed in epileptic children at 

the C3, C4 and Cz in the frequency range of 1-4 Hz. For the Theta, lower alpha, β1, and β2 

frequency bands, lower activities were also observed at the C3 in epileptic children. While this 

effect was bilateral at C3 and C4, for upper alpha band and β3, β3, and lower Gamma frequencies. 
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Figure3. Statistical differences between EEG power spectrum of epileptic and typically developed 

children at the age of 6-9 
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Comparison between epileptic and normal children at the age of 9-12  

As presented if Figure4, smaller lower frequency activities were observed in epileptic children at 

the middle frontal region (Fz) in the frequency range of 1-4 Hz, β4, and lower gamma band 

activities. For the Theta, β1, β2, β3 frequency bands, lower activities were also observed at the Fz, 

C3 and C4 in epileptic children. While this effect was bilateral at C3 and C4, for the alpha band 

frequencies. 
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 Figure4. Statistical differences between EEG power spectrum of epileptic and typically developed 

children at the age of 9-12 

  

Discussion 

Studies of functional brain connectivity in humans have shown that most studies point in the 

direction of a small-world pattern for functional connectivity, although scale-free networks have 

also been described (Eguiluz et al., 2005); The architecture of functional brain networks may 

reflect genetic factors and is related to cognitive performance; Different types of brain disease can 
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sometimes giving rise to more random networks which may be associated with cognitive problems 

as well as a lower threshold for seizures (pathological hypersynchronization). (Stam CJ, 2007). 

According to the previous studies conducted in the modern theory of networks on large-scale 

networks such as the brain, the following reasons can be put forward for the use of brain network 

modeling: (1) The new theory of powerful realistic models of complex networks It gives us access 

to the brain. (b) a large number of efforts to study the topological and dynamical properties of 

these networks are still growing. (iii) This theory allows us to better understand the correlations 

between network structure and the processes taking place in these networks, especially 

synchronization processes. (iv) By relating structure to function, network changes can be 

investigated. (v) and these investigations provide scenarios of how complex networks might 

develop, and how they might respond to different types of diseases. 

Other studies have shown that the small-world topology of functional brain networks is highly 

consistent across techniques, conditions, and frequency bands, and the architecture of functional 

brain networks may reflect genetic factors and be related to cognitive function. Different types of 

brain diseases can disrupt the optimal pattern of the small world, sometimes causing more random 

networks that may be associated with cognitive problems as well as a lower threshold for seizures 

(pathological hypersynchrony). It has been shown in studies that various types of brain disease 

such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with 

deviations of the functional network topology from the optimal small-world pattern (Cornelis J 

Stam., 2007). Developmental studies conducted on the activity patterns, and organization of brain 

have indicated specific association between the brain structural and functional organization and 

abnormalities observed in the neurodevelopmental diseases. Considering the fact that 

developmental process leads to a significant change in network topology, it provides a possibility 

to investigate optimal changes in typically developed children and compare it with other network 

topologies such as neurodevelopmental disorders. If we consider the brain signals as the language 

of the brain, through which the brain gives us reliable information about some of its activities and 

interactions, some information and features can be extracted by accurately recording 

electroencephalography signals and processing them accurately. 

The brain shows significant growth over the time on a macroscopic and microscopic scale. At the 

cellular level, the brain begins to grow an abundance of synaptic connections, which almost half 
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of them are lost by the age around 6. This pruning process could potentially influence the brain 

oscillatory pattern and deviation of it may cause drastically changes in behavior and cognitive 

functions. The question raised in this study was whether this process differs in typically developed 

and epileptic children. Therefore, in a cross-sectional study, brain oscillatory pattern of the two 

groups were statistically compared.   

In fact, epilepsy is known as a brain network disease that is manifested by sudden and temporary 

electrical discharge of a group of interconnected neurons. Our goal was to understand whether this 

effect is also temporal or it may influence the typical developmental process as well. Our results 

only showed significant difference is observed in power of brain oscillation at the frequency band 

of delta at the middle frontal region (at the age of 9-12). Based on these results, we think this effect 

is more probable to be temporal and my not influence the brain oscillatory pattern drastically. So, 

it seems that backbone of the brain functional network is untouched. However, more investigation 

using more sophisticated algorithm such as investigation of brain functional network such as graph 

theory is proposed, but meanwhile we believe the effect observed in the local addresses are 

somehow easier to be treated.  

Although we had a similar number of boy and girl in this study but investigation of gender effect 

with a bigger population is proposed for the future works. Moreover, structure and hemodynamic 

also play a major role and should be taking into the account. Therefore, a longitudinal study and 

adding the f/MRI data could potentially improve the insight into the findings. 

Conclusion 

It is believed that behavior and cognitive functions are based on divergence and convergence of 

oscillatory activities in the brain. Since this oscillatory pattern follows a typical trend during the 

development, it is interesting to know whether this pattern is influence by the abnormal 

development. In this regard, in a cross-sectional study, two groups of normal and epileptic children 

at the age 0f 6-9 and 9-12 were compared. The results did not show significant changes in the 

power brain waves and effect of epilepsy seems to be temporal with no lasting effect. The results 

are interesting, but more investigation at the network level using functional connectivity 

approaches is required. Regional and global parameters of the brain functional connectome may 

provide a better insight. Nevertheless, based on the current results, it seems that backbone of the 

brain functional network is untouched in epileptic children and disease only target local addresses. 
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If it is correct, it will be very influential in planning the treatment process and brings a hope of 

implying brain stimulation techniques to compensate the negative effects. 
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