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Spike sorting is a class of techniques used in the analysis of electrophysiological 
data. Studying the dynamics of neural activity via electrical recording relies on the 
ability to detect and sort neural spikes recorded from a number of neurons by the 
same electrode. This article reviews methods for detecting and classifying action 
potentials, a problem commonly referred to as spike sorting.
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1. Introduction

ne of the major questions contemporary 
neuroscience seeks to elucidate concerns 
the mechanisms used by dedicated parts 
of brains (our brain, vertebrate brains, in-
sect brains) to perform specific tasks. Our 

brains are buzzing with electrical activity created by so-
dium and potassium ions moving in and out of neurons 
through specialized pores. Classical methods for explor-
ing the mechanisms of brain function involve recording 
the electrical activity of single nerve cells. Neurophysi-
ologists often record the currents flowing across cell 
membranes using an insulated wire probe whose ‘listen’ 
to a few neurons close-by the electrode tip that fire action 
potentials or ‘spikes’ (Fig.1).Any such probe will record 
currents passing across all sorts of physiological mem-
branes close to its tip, but we can approximate this as a 
small number of close, high-amplitude sources imposed 
on a background of synaptic, somatic and axonal cur-
rents from more distant sources. Each neuron has spikes 

O
of a characteristic shape, which is mainly determined by 
the morphology of their dendritic trees and the distance 
and orientation relative to the recording electrode (Le-
wicki, 1998).When a recording electrode measures ac-
tion potentials from multiple cells, these contributions 
must be disentangled from the background noise and 
from each other before the activity of individual neu-
rons can be analyzed. This procedure of estimating one 
or more single cell point processes from a noisy time se-
ries is known as spike sorting. Spike sorting, then, is the 
process of identifying the waveforms associated with 
action potentials in the foreground cell(s) and thereby 
detecting firing events. As a matter of fact, Spike sort-
ing is the grouping of spikes into clusters based on the 
similarity of their shapes. Given that, in principle, each 
neuron tends to fire spikes of a particular shape, the re-
sulting clusters correspond to the activity of different 
putative neurons. The end result of spike sorting is the 
determination of which spike corresponds to which of 
these neurons.
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Spike sorting _i.e. the classification of which spike 
corresponds to which neuron_ is a very challenging 
problem. Then, before tackling technical issues, it is im-
portant to discuss why we need to do such a job, rather 
than just detecting the spikes for each channel without 
caring from which neuron they come. It is already well 
established that complex brain processes are reflected 
by the activity of large neural populations and that the 
study of single-cells in isolation gives only a very limited 
view of the whole picture (Brown, Kass, & Mitra, 2004; 
Buzsáki, 2004)Therefore, progress in Neuroscience re-
lies to a large extent on the ability to record simultane-
ously from large populations of cells. The implemen-
tation of optimal spike sorting algorithms is a critical 
step forwards in this direction, since it can allow the 
analysis of the activity of a few close-by neurons from 
each recording electrode. This opens a whole spectrum 
of new possibilities. For example, it is possible to study 
connectivity patterns of close-by neurons(Buzsáki, 
2004; Harris, 2005; Harris, Henze, Csicsvari, Hirase, 
& Buzsáki, 2000), or to study the topographical orga-
nization of a given area and discriminate the responses 
of nearby units(Lewicki, 1998; Quian Quiroga, 2009; 
Quiroga, 2007). It is also possible to have access to the 
activity of sparsely firing neurons, whose responses 
may be completely masked by other neurons with high 
firing rates, if not properly sorted. Separating sparsely 
firing neurons from a background of large multi-unit 
activity is not an easy job, but this type of neurons can 
show striking responses (Hahnloser, Douglas, & Hepp, 
2002; Perez-Orive, et al., 2002; Wood, Black, Vargas-
Irwin, Fellows, & Donoghue, 2004).

General Framework: Why is spike sorting important? 

The short answer to this is that it is vital for extra-cel-
lular recording from multiple cells. Obviously, sorting 
spikes from a single electrode can provide signals from 
more than one cell. But automatic recognition is also es-
sential for any multiple electrodes recording as achieving 
and maintaining isolation on multiple probes simultane-
ously can be highly impractical. The action potentials 
originating from different recorded neurons have distinct 
shapes, and based on these differences one can select (or 
discriminate) certain neurons among others.

2. Spike Sorting Steps

2.1. Data Acquisition

The first step in any spike sorting algorithm involves 
the acquisition of extracellular data in a form amenable 
to the detection of neuronal spikes. For many neurons, 

the most prominent feature of the spike shape is its am-
plitude, or the height of the spike. One of the simplest 
ways to measure the activity of a neuron is with a volt-
age threshold trigger. The experimenter positions the re-
cording electrode so that the spikes from the neuron of 
interest are maximally separated from the background 
activity (Quiroga, 2009) . Window discriminators can 
be implemented on-line, but have the main disadvan-
tage that they require a manual setting of the windows 
by the user, which may need readjustment during the 
experiment. In this regard, manual procedures are of 
limited utility because shape parameters designed for 
human inspection are inefficient at representing com-
plex waveforms. Moreover the labor-intensive process 
scales poorly to experiments performed with large num-
bers of electrodes, and a subjective approach makes it 
difficult to design reproducible and reportable quality 
metrics. For these reasons, an algorithmic approach is 
desirable, and in fact, computational solutions with lim-
ited human monitoring have been shown to generally 
outperform manual sorting (Harris, 2005).

2.2. Filtering

The word "filtering" refers to an attempt to extract the 
important part of some data while eliminating random 
contributions called "noise" or other unwanted features 
which obscure the ones that matter (Quian Quiroga, 
2009). The first step when processing continuously re-
corded data is to apply a band pass filters in order to 
avoid low frequency activity and visualize the spikes 
(Quiroga, 2007). This step is usually overlooked in 
the literature, but its implementation can dramatically 
change the spike shapes. In the example of Fig. 3, the 
continuous data was filtered with a band pass filter be-
tween 300 and 3000Hz. Frequencies below 300Hz are 
filtered to delete the slow components of the raw data. 
The upper cutoff frequency of the filter is to diminish 
the noisy appearance of the spike shapes. As it is usually 
the case with filtering, a compromise has to be taken. 
On the one hand, one would like to have a narrow fil-
ter band to better visualize the spikes, but on the other 
hand, if the band is too narrow, the filter may hinder 
different features of the spike shapes (Quian Quiroga, 
2009; Quiroga, 2007). 

2.3. Spike Detection

From the filtered data, spikes are usually detected us-
ing an amplitude threshold. An adequate threshold can 
be set manually, as done in most systems with on-line 
spike detection.
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Although being simple and fast, due to some difficul-
ties, using this method require special vigilance. Mov-
ing threshold during recording considered as a next 
problem. The threshold level determines the trade-off 
between missed spikes (false negatives) and the number 
of background events that cross threshold (false posi-
tives). In fact increasing the threshold level reduces the 
number of spikes that are misclassified (Type II error), 
but at the expense of many missed spikes. On the other 
hand, getting false positives due to noise crossing a low 
threshold (Type I error) (Quiroga, 2009; 2007). Another 
problem in spike detection is misclassification error due 
to overlaps. In addition to the background noise, the 
spike height can vary greatly if there are other neurons 
in the local region that generate action potentials of sig-
nificant size. If the peak of the desired unit and the dip 
of a background unit line up, a spike will be missed.
(Quian Quiroga, 2009; Quiroga, 2007). However, an 
automatic threshold is preferable, especially when pro-
cessing large number of channels. Once spikes are de-
tected, they have to be stored for clustering (Quiroga, 
2007).

There are two issues concerning spike storage that 
need a brief description. The first one is how many data 
points to store. This of course depends on the sampling 
frequency and ideally one would like to store the whole 
spike shape; i.e. about 2 ms of data. With a sampling 
frequency of 30 KHz, this corresponds to 60 data points. 
Some methods for feature extraction, such as wavelets 
(using a multi-resolution decomposition implementa-
tion), require that the number of data points is a power of 
2 (Nenadic & Burdick, 2005). In this case, with 30KHz 
sampling, 64 data points would be optimal. The second 
issue has to do with the alignment of the spike shapes. 
Spikes can be aligned to their maximum. But due to 
insufficient sampling the maximum can be at different 
points of the spike shape. To avoid such misalignments, 
which could lead to over clustering, the spike shapes 
can be oversampled using interpolated waveforms, for 
example, using cubic splines. Then, the interpolated 
shapes can be aligned and later decimated to the original 
sampling rate (Quiroga, 2007). 

For recordings with good signal to noise ratio (SNR) 
this is usually achieved by a simple thresholding (Kim & 
Kim, 2000). When the SNR is not good enough, differ-
ent spike-detection algorithms can be applied, e.g. use 
of nonlinear energy operator (Kim & Kim, 2000) con-
tinues wavelet transform (Nenadic & Burdick, 2005).

2.4. Feature Extraction

Transforming the input data into the set of features is 
called feature extraction which involves simplifying the 
amount of resources required to describe a large set of 
data accurately. As a third step, it measure features of 
shapes, such as spike height and width, peak-to-peak  
amplitude, energy (the square of the signal), mean or 
variance. In general, the more features we have, the bet-
ter we will be able to distinguish different spike shapes. 
The result of this step is an M×K-matrix, where K is 
the number of detected spikes and M is the number of 
extracted feature. Principal component analysis (PCA), 
wavelet decomposition or some other techniques are 
commonly used to reduce the dimensionality of the 
M×K-matrix by extracting the most important features 
of the detected spikes. The result is a new matrix of re-
duced dimension, L×K, where L < M is the number of 
extracted features per spike.(Tiganj & Mboup, 2011).

Ideally, one wants to extract those features that best 
separate the different clusters of spikes and get rid of 
all the dimensions dominated by noise.This step saves 
computational time and it is mandatory for some clus-
tering algorithms that cannot handle too many inputs in 
a reasonable time (Quiroga, 2007). Although eliminat-
ing inputs dominated by noise can certainly improve 
clustering outcomes, but the major challenge is still re-
main, which two features are the best among extracted 
features?

A first choice would be to take basic characteristics 
of the spikes, such as their peak (or peak to peak) am-
plitude, their width and energy (the square of the sig-
nal). However, it has been shown that such features are 
not optimal for differentiating spike shapes in general 
(Quiroga, 2007; Sakowitz, Quian Quiroga, Schürmann, 

Figure 1.  The basic set-up for measuring and analyzing ex-
tracellular neural signals.
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& Basar, 2005; Sambeth, Maes, Quiroga, & Coenen, 
2004). By far, the most used method for feature ex-
traction is to take the first 2 or 3 principal components 
(Abeles & Goldstein Jr, 1977; Glaser & Marks, 1968), 
usually containing more than 80% of the energy of the 
signal (Quiroga, 2007). However, principal component 
analysis (PCA) selects the directions of maximum vari-
ance of the data, which are not necessarily the directions 
of best separation. In other words, it may well be that 
the information for separating the clusters is represented 
in one (or a combination) of principal components with 
low eigenvalues, which are usually disregarded (Quiro-
ga, 2007). 

3. Clustering

Cluster analysis or clustering is the task of assigning a 
set of objects into groups (called clusters) so that the ob-
jects in the same cluster are more similar (in some sense 
or another) to each other than to those in other clusters. 
The fourth and final step of spike sorting is to group 
spikes with similar features into clusters, corresponding 
to the different neurons. A common method is a technique 
called cluster cutting. In this approach, the user defines a 
boundary for a particular set of features. If a data point 
falls within the boundary, it is classified as belonging to 
that cluster; if it falls outside the boundary, it is discard-
ed. Figure 3(a) shows an example of boundaries placed 
around the primary clusters. In off-line analysis the clus-
ter boundaries are determined after the data have been 
collected by looking at all (or a sample from) the data 

Figure 2. The extracellular waveform shows several different action potentials generated by an unknown number of neurons. 
The data were recorded from Rat’s locus coeruleus witha Tungsten electrode by Electromodule and Neurocomet (sciencebeam 
institiute, Tehran, Iran). In this case, by amplitude discrimination method, neurons C and D are recorded as a same neuron by 
window 2. 

Figure 3.  (A) Shape separation of the spikes by cluster analysis in the space of waveforms (Neurocomet, Sciencebeam 
institute, Tehran Iran) Clusters are shown with colors. The axes of the scatter plot are positive and negative area under 
curve. (B) The separated waveforms resulting from clustering the raw spike waveforms. 
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over the collection period. This allows the experiment to 
verify that the spike shapes were stable for the duration of 
the collection period (Lewicki, 1998). However, besides 
being a very time-consuming task, manual clustering in-
troduces errors due to the limited dimensionality of the 
cluster cutting space and due to human biases(Harris, et 
al., 2000). In fact, in many cases clusters overlap and the 
manual setting of a boundary is very subjective.

4. Discussion

We have reviewed here the process of spike sorting. 
In addition to so called methods, there are some other 
methods for spike sorting including template match-
ing, Bayesian methods and so on.  Each method has 
some advantages and disadvantages itself. According-
ly, template-based methods can fail for neurons that 
burst and can becomeincreasingly inaccurate if there 
is electrode drift or Bayesian methods are much more 
accurate for spike shapes that are similar. On the other 
hand, despite the simplicity ofamplitude discrimina-
tion, this technique can be time consuming and biased. 
Not onlycan neurophysiologists waste hours search-
ing for well isolated cells, but in the end thissearch 
is biased towards cells that produce the largest ac-
tion potentials which may not berepresentative of the 
entire population. Hence according to pros and cons 
of each method, a more practical question might be: 
what is the simplest method that satisfiesexperimental 
demands? For many researchers this is still a single 
electrode with threshold detection despite mentioned 
difficulties.  
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