Title: Probable Neuropsychological & Cognitive Complications due to Cytokine Storm in Patients With COVID-19

Authors: Zahra Keshtgar¹, GH. Reza Chalabianloo²*, Niloofar Esmaeili³

1. Neuroscience Department, Tabriz University of Medical sciences, Tabriz, Iran.
2. Neuroscience Department, Azarbaijan Shahid Madani University, Tabriz, Iran.
3. Hematology & Oncology Department, Tabriz University of Medical sciences, Tabriz, Iran.

*Corresponding author: GH. Reza Chalabianloo, Neuroscience Department, Azarbaijan Shahid Madani University, Tabriz, Iran. E-mail: chalabianloo@azaruniv.ac.ir

To appear in: Basic and Clinical Neuroscience

Received date: 2021/01/23
Revised date: 2021/05/06
Accepted date: 2021/09/28
This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. *Basic and Clinical Neuroscience* provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as a published article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:

DOI: http://dx.doi.org/10.32598/bcn.2022.3202.1
Abstract

Introduction: COVID-19 (coronavirus disease 2019) was identified in China in December 2019 for the first time and is rapidly spreading throughout the world as a pandemic. As COVID-19 causes mild to severe acute respiratory syndrome, most studies in this context have focused on pathogenesis primarily in the respiratory system. However, evidence shows that the central nervous system (CNS) may also be affected by COVID-19. Since COVID-19 is spreading, it is imperative to study its possible cognitive effects in patients suffering and recovering from COVID-19.

Methods: The articles used in this study were searched by keywords such as Cytokine storm and covid-19, covid-19 and executive dysfunction, cognitive disorder and covid-19, CNS and covid 19, Coronavirus, Neuroinvasion in science direct, Scopus, PubMed, Embase, and Web of Science databases based on Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) checklist. The study will assess all observational studies published between December 2019 and April 2021 in peer-reviewed journals, including cross-sectional, cohort, case-control studies, case reports and case series. The search result was 106 articles, of which 73 articles related to Covid-19, the stages of infection by this virus, its effect on the nervous system and neurological symptoms, the cytokine storm caused by this infection, and the possible cognitive consequences caused by this virus in patients, has been reviewed. Other articles were not checked due to their limited relevance to the topic under discussion.

Results: Studies show that neurons may be directly affected by SARS-CoV-1 and SARS-CoV-2. Furthermore, various studies indicate that systemic inflammation (so-called "cytokine storm") is also responsible for brain damage induced by infection with SARS-CoV-1 and SARS-CoV-2.

Such a way that this patients showed elevated levels of interleukin (IL-), 6, 8, and 10 and of tumor necrosis factor-alpha (TNF-α) in their blood.

Conclusion: Various cognitive defects following an increase level of cytokines such as TNF-α and IL-6,8 have been observed. Therefore, due to the increase level of these pro-inflammatory factors in the brains of these patients, cognitive deficits can be expected, which need further investigation.

Keywords: Neuropsychological Complications, Cognitive impairments, Neuroinvasin, Routes of dissemination, Cytokine storm, Coronavirus, COVID-19.
Highlights

- The COVID-19 virus has the potential to infect the nervous system.
- COVID-19 can cause a cytokine storm in an infected person's brain.
- Cognitive deficits following a cytokine storm are possible in patients with COVID-19.

Plain Language Summary

Here, we reviewed the evidence related to the clinical manifestations of the CoV infection, neuroinvasion of coronaviruses and neurologic symptoms, cytokine storm & Central nervous system pathophysiology, and discussed the possible cognitive impairments of COVID-19 caused by a cytokine storm in CNS infection. Future studies can benefit from this information.
1. Introduction

Coronaviruses are a large family of viruses responsible for diseases in mammals and birds (Liu et al., 2020). As with Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), CoVs lead to severe respiratory diseases in humans. Some types of these viruses, including MERS-CoV, 229E, NL63, OC43, HKU1, and SARS-CoV, may have adverse neuropsychiatric impacts in humans (Myint, 1995; Matoba et al., 2015)(Table 1). As a result of SARS infection, most SARS patients reported poor attention, memory impairments, insomnia, anxiety and depression symptoms, indicating cognitive impairments following SARS infection (Sheng et al., 2005a). In spite of physical recovery, these psychiatric symptoms may still remain in patients with SARS (Tsang, Scudds, & Chan, 2004).

The first report of SARS-CoV-2 (also known as COVID-19) in China occurred in December 2019 (Lam et al., 2020). According to World Health Organization (WHO), new coronavirus diseases are considered pandemics.

As with MERS and SARS, COVID-19 is characterized by shortness of breath, respiratory problems, cough, fatigue, sore throat, and fever. The patients also complain about headaches, nausea, dizziness, vertigo and vomiting (Jiang et al., 2020). There is evidence that MERS-CoV, SARS-CoV, and COVID-19 can cause acute respiratory distress syndrome (ARDS) and defile other members and cell types throughout the disease, such as the mucosa of the intestinal tract, renal tubular cells, lymphocytes, reticuloendothelial cells, and nerve cells (Kuiken et al., 2003; Leung et al., 2003; Peiris et al., 2003; Wu, Xu, Yang, Liu, & Yang, 2020; Zhang, Shi, & Wang, 2020).

Although coronaviruses mainly infect humans via digestive and respiratory system, SARS-CoV-2 infection can affect the nervous system indirectly, particularly through neurodegenerative diseases. Researchers have recently found a strong correlation between gut microbiota, neuroinflammation, and neurological diseases. Lin et al. suggest that SARS-CoV-2 can affect gut mucosa cells, cause inflammation and dysbiosis, and ultimately lead to neuroinflammation and neurodegeneration (Lin, Zheng, & Zhang, 2018) as meningoencephalitis, various viral associated necrotizing encephalitides, and secondary cytokine-induced acute necrotizing syndromes (Filatov, Sharma, Hindi, & Espinosa, 2020; Poyiadji et al., 2020; Moriguchi et al., 2020). These
reports highlight the effect of medical care during this pandemic. This will make COVID-19 an additional challenge for neurologists, clinical neuroscientists, and neuropsychologists (Zhao et al., 2020; Papa et al., 2020; Waldman et al., 2020; Khosravani, Rajendran, Notario, Chapman, & Menon, 2020).

Because the structure and pathogenesis of most CoVs are the same (St-Jean et al., 2004; Butler, Pewe, Trandem, & Perlman, 2006; Yuan et al., 2017) and it is unclear how COVID-19 works, so investigating the involvement of other organs (e.g., CNS) and the relationship between psychological factors, inflammation, and cognitive functions are essential, especially because of the new nature of the virus.

According to existing research, cognitive deficits and inflammation are generally linked. Further exploration of the possible interrelationships among COVID-19 inflammation, cognitive function, and psychological factors is necessary to provide future research information. This is discussed in this study.

The articles used in this study were searched by keywords such as Cytokine storm and covid-19, covid-19 and executive dysfunction, cognitive disorder and covid-19, CNS and covid 19, Coronavirus, Neuroinvasion. The keywords were searched in international databases such as ScienceDirect, Scopus, PubMed, Embase, and Web of Science using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist. All observational studies published between December 2019 and April 2021 in peer-reviewed journals in any language, including cross-sectional, cohort, case-control, and case reports, were assessed in this study. The search result was 106 articles. Firstly, search engine results were evaluated for thematic relevance to select the documents. Then, the abstract was evaluated in terms of relevance to the purpose after reviewing the titles. Finally, 73 articles were selected and thoroughly studied. Notes were taken of selected documents. The material collected about Covid-19, the stages of infection by this virus, its effect on the nervous system and neurological symptoms, the cytokine storm caused by this infection, and the possible cognitive consequences caused by this virus in patients, was divided and summarized. Other articles were not checked due to their limited relevance to the topic under discussion.
2. Symptoms and Consequences of CoV infection

The SARS-CoV-2 infection manifests itself in three stages. At the early stages of the disease, there is a high level of replication of the virus, which causes pyrexia, cough, and general discomfort for several days. Patients may develop high fever, hypoxemia, and respiratory signs that progress to bilateral pneumonia during the second stage. However, lab testing indicates that viral replication declines near the end of this stage (Peiris et al., 2003). About 20% of patients develop SARS at the last stage of the infection, which can be fatal (Nicholls, Dong, Jiang, & Peiris, 2003; Van et al., 2014). The SARS may cause an inflammatory response in the host (known as a "cytokine storm"), which causes alveolar damage and severe hypoxemia, resulting in fatal secondary sepsis during the final stage.

Recently, studies by Chen et al. (2019) have shown that SARS-CoV-2 infection results in lymphocytopenia (low CD4+ and CD8+ T cell counts with average B cell counts); elevated cytokine levels of IL-6, IL-2R, IL-10, TNF-α, and CCL2; as well as decreased IFN-γ expression in CD4+ T cells. With mild symptoms of COVID-19, IL-6, IL-2R, IL-10, and TNF-α levels rise slightly or remain close to normal, but with severe symptoms, they rise (Fig. 1). Scientists claim that there is a connection between the cytokine storm and severe COVID-19, as observed in cases of SARS-CoV infection (Chen et al., 2019).

A persistent inflammatory, immunosuppressive, and catabolic syndrome (PICS) may result following infection, which indicates a disturbance in the immune system. These conditions are probably caused by Covid 19 infection and the resulting cytokine storm, which is caused by the continuous release of endogenous alarmins or danger-associated molecular patterns (DAMP) from infected organs (Hawkins et al., 2018). Unfortunately, no definitive knowledge is available regarding COVID-19 survivors' chronic inflammation; however, this theory is credible given the correlation between severe infection and PICS.
3. Brain invasion by SARS-CoV-2 and neurological symptoms: possible mechanisms of transmission

3.1. Neural pathway

Despite the lack of evidence for SARS-CoV-2 invasion into the CNS, viral particles have been found in the CSF of one patient with meningoencephalitis (Wu, Xu, Yang, Liu, & Yang, 2020) and in the frontal lobe of a patient with Parkinson's disease who had symptoms such as fever and confusion at the time of admission (Paniz-Mondolfi et al., 2020). Animal studies have shown that two types of human coronaviruses (HCoV, HCoV-OC43) and SARS-CoV-1 enter the CNS through the olfactory nerve and the trigeminal nerve in the olfactory epithelium (Desforges et al., 2020). It has been shown that SARS-CoV-1 can infect the brainstem through the olfactory bulb and piriform cortex in transgenic mice expressing human ACE2 (Netland, Meyerholz, Moore, Cassell, & Perlman, 2008). HCoV-OC43 can also infect the olfactory bulb of mice and spread through nerve pathways to the brain and spinal cord (St-Jean et al., 2004; Desforges et al., 2020). A full brain infection of HCV-OC43 may occur within 7 days and nerve cells (neurons and glial cells) can be influenced by the virus (St-Jean et al., 2004). The flu A virus can also reach the respiratory centers in the brainstem via the vagus nerve (Pivot et al., 2001).

3.2. Pathway via the blood

The SARS-CoV-1, HCoV-OC43, and SARS-CoV-2 viruses can also infect the brain through the bloodstream (Desforges et al., 2020). After a viral infection of the respiratory tract, large amounts of cytokines and chemokines are released, causing the permeability of the blood-brain barrier (BBB), which could allow SARS-CoV-1 to spread (McCray et al., 2007). MERS-CoV can also infect the central nervous system by using the leukocytes as Trojan horses because Dipeptidyl-peptidase 4 (DPP4) is the MERS-CoV receptor expressed by activated leukocytes (Zhao et al., 2015). The hypothesis that MERS-CoV reaches the brain via the hematogenous pathway is confirmed by symptoms such as seizure, encephalitis, and stroke, 2 to 3 weeks after ARDS (Kim et al., 2017). On the other hand, the hypothesis that infection spreads via the bloodstream is controversial during the first few days following infection. SARS-CoV-1 and MERS-CoV are not found in non-neurons in the brain, indicating a more direct route for these viruses to reach the brain (Li, Bai, & Hashikawa, 2020).
3.3. Target cells

Like the SARS-CoV-1 virus, the SARS-CoV-2 cellular receptor is the ACE2 (Hoffmann et al., 2020). This enzyme is highly expressed in various organs. The entry of the virus through the olfactory bulb causes inflammatory reactions and cytokine storms, eventually leading to anosmia and encephalitis. When the virus enters the eye, it causes conjunctivitis in the eyes, spreads through the tears, and is transmitted to various organs through the nasolacrimal system. Infection of the heart with this virus can lead to necrotic lipid formation and when ruptures, causes blood clots and myocardial infarction. The virus enters the kidney by means of the ACE2 receptors, causing deposition of extracellular matrix, fibrosis, diuresis, and proliferation of kidney cells, resulting in acute kidney injury. (Harmer, Gilbert, Borman, & Clark, 2002). Viral affect the liver by activating kupffer cells, which trigger an inflammatory reaction and activate hepatic skellate cells and hepatocytes, leading to pyroptosis and fibrosis. In the lungs, the virus causes damage to the walls of the alveolar cells and the formation of debris, which causes thickening of the alveolar cell walls, lung damage, and shortness of breath, which are common in COVID-19 (Fig. 2)(Hamming et al., 2004).

Also, ACE2-mRNA and protein have been discovered in nuclei involved in the central regulation of cardiovascular function like the cardio-respiratory neurons of the brainstem and the motor cortex, hypothalamus, and raphe (Harmer, Gilbert, Borman, & Clark, 2002; Hamming et al., 2004; Xia and Lazartigues, 2008). It is yet to be determined what types of cells express ACE2 (Xia and Lazartigues, 2008), but animal studies show that this enzyme is mainly expressed by neurons, so neurons may be directly infected with SARS-CoV-1 and SARS-CoV-2.

4. Cytokine storm & Central nervous system pathophysiology

HCoV infection may affect the central nervous system in two ways, including replicating the virus in infected cells or neuro immunopathology. Activation of the immune system and macrophages by the SARS-CoV-2 causes the secretion of large amounts of cytokines and chemokines, which systemic inflammation caused by the cytokine storm leads to brain damage (Xu et al., 2005; Li et al., 2016b). In the same way, studies have shown increased interleukin (IL-
6, 8, and 10 and of tumor necrosis factor alpha (TNF-α) in the blood of SARS-CoV-2 infected patients (Fig. 3)(Li et al., 2016b; Chen et al., 2019, 2020). Also, Inflammation in these patients, addition to respiratory failure, also causes hypoxic encephalopathy, which indicates the effect of SARS-CoV-2 on the central nervous system (Chen et al., 2019).

Examination of patients with severe COVID-19 infection than those with moderate infection, and in patients who died than survivors shows that inflammation plays an important role in disease progression and death after SARS-CoV-2 infection (Chen et al., 2019, 2020). Furthermore, peripheral lymphopenia was observed in most COVID-19 patients irrespective of their clinical severity (Chen et al., 2019).

Post-mortem evaluation of brain tissue of patients who died from SARS-CoV-1 infection indicates foci of necrotic cell death, edema, glial scar, and infiltrated immune cells (macrophages and T lymphocytes) (Fig 3)(Gu et al., 2005; Xu et al., 2005; Guo, Korteweg, McNutt, & Gu, 2008). Therefore, HCoV infection can cause inflammation of the brain, but its underlying mechanisms need further explanations.

To further investigate about the effect of SARS-CoV-1 infection on the brain, expressing the Human ACE was examined in transgenic mice, and the results indicate that the virus invades the brain (McCray et al., 2007; Netland, Meyerholz, Moore, Cassell, & Perlman, 2008). Because SARS-CoV-1 viral particles are detected in olfactory bulbs (the most infected region) and in deeper brain areas, including the piriform and infralimbic cortices, basal ganglia, dorsal raphe, thalamic nuclei, and brainstem (Netland, Meyerholz, Moore, Cassell, & Perlman, 2008). Contrary to human studies, brain inflammation was seen in these mice without alteration in astrocyte density and increased microglia cells density (Netland, Meyerholz, Moore, Cassell, & Perlman, 2008) and marked increases in IL-6, CCL2, IFN-γ and CCL12 levels following infection with SARS-CoV-1 (McCray et al., 2007). Therefore, these studies confirm the hypothesis of brain inflammation caused by HCoV infection.

Mice infected by the JHM (John Howard Muller) strain of mouse hepatitis virus (MHV) through intranasal inoculation show rapid activation of microglia cells, phagocytosis of infected cells, and secretion of cytokines including, IFN-α/β, CCL2, TNFα, and IL-6 (Wheeler, Sariol,
Meyerholz, & Perlman, 2018). Thus, regardless of the virus strain, the brain's immune response to the CoV infection is similar, indicating the critical role of microglia in the early stages of the immune response against the virus. Because the reduced microglia increases the proliferation and spread of the virus in the brain of infected mice (Wheeler, Sariol, Meyerholz, & Perlman, 2018). Microglia also activate T lymphocytes after infection (Wheeler, Sariol, Meyerholz, & Perlman, 2018). For example, by increasing the permeability of the blood-brain barrier (BBB) by metalloproteinases secreted by neutrophils and macrophages, CD4+ and CD8+ T lymphocytes can affect the CNS (Skinner, Marro, & Lane, 2019). Follow-up studies of JHM of MHV inoculation also show both types of lymphocytes and increased cell infiltration in the brains of these mice (Phares, Stohlman, & Bergmann, 2013). CD8+ T cells play an important role in controlling and clearing the virus, but T cells enhance the immune response by releasing IFN-γ and stimulating the expression of major histocompatibility complex (MHC) proteins in microglial cells (Wheeler, Sariol, Meyerholz, & Perlman, 2018). Such mechanisms are likely to be stimulated to increase viral clearance since it requires both MHC 1 and 2 expression by immunocompetent cells (Skinner, Marro, & Lane, 2019).

After JHMV infection, an inflammatory reaction is initiated by two cytokines.

There is evidence that CXCL10 acts as a sentinel in the CNS because its release attracts T lymphocytes (Skinner, Marro, & Lane, 2019), whereas IL-21 could improve both B and T lymphocyte responses (Phares, Stohlman, & Bergmann, 2013). Additionally, CD4+ regulatory T cells (Treg) are activated when the inflammatory response reaches its peak and modulates the immune response (de Aquino et al., 2013). Therefore Treg is essential to prevent damage caused by neuroinflammation and virus replication in CNS (de Aquino et al., 2013). Therefore, evidence suggests that inhibiting inflammation of the brain can prevent or reduce CoV-induced neuropathologies.

After brain damage or infection, the first cells to be activated to maintain brain homeostasis and minimize tissue destruction are microglia (Hanisch & Kettenmann, 2007; Ransohoff & Perry, 2009), which produce and release several inflammatory chemomediators (pro-inflammatory cytokines and chemokines) (Ransohoff & Perry, 2009; Chatterjee, Biswas, Nag, Ramachandra, & Das Sarma, 2013), modulate inflammatory responses between the CNS and the
peripheral immune system and as phagocytosis, they can clear damaged cells and cellular debris and present antigens to T lymphocytes (Wheeler, Sariol, Meyerholz, & Perlman, 2018). After brain homeostasis is reestablished, the activity of microglia decreases. Therefore, the consequences of overreacting microglia following SARS-CoV-2 infection could be particularly harmful since cytokine storm (a severely inflammatory immune response) is associated with COVID-19.

5. Cognitive functions after cytokine storm in COVID-19

In general, the brain's immune cells (microglia and cytokines) produce high levels of pro-inflammatory factors in various brain regions (Russo, Barlati, & Bosetti, 2010), which are harmful to brain cells. Because acute or chronic inflammatory processes that induce the release of neurotoxic products such as reactive oxygen species (ROS) and certain damaging enzymes can damage brain tissue (Blasko et al., 2004; Raz & Rodrigue, 2006). Limbic and associated brain structures such as hippocampi, prefrontal cortex, and basal ganglia (structures that play essential roles in cognitive processes like memory, attention, emotion, and perception) have more enzymes involved in an inflammatory response than do primary motor or sensory cortices; therefore, these areas may be more affected by the destructive effects of inflammatory processes (Raz & Rodrigue, 2006; Wang, Tan, Yu, & Tan, 2015).

Plenty of studies have shown that inflammation activation leads to cognitive deficits, suggesting a prominent role of IL-1β, IL-6, IL-18, and TNF-α (Duarte et al., 2017; Magalhaes et al., 2018; Shen et al., 2019; Chakrabarty, Torres, Bond, & Yatham, 2019). On the other hand, Neurocognitive impairments are common in patients with viral infections because inflammation may also be present after clearing the virus (Peiris et al., 2003). For example; a follow-up interval ranging from 6 and 39 months following recovery from SARS and MERS showed impairment in memory, attention, concentration, or mental processing speed in over 15% of patients (Sheng, Cheng, Lau, Li, & Chan, 2005b; Lam et al., 2009; Bechter, 2013; Kepinska et al., 2020; Rogers et al., 2020).

Therefore, due to the increase of T helper (Th)-1 cytokines(IL-1β, IL-6, IL-8, Interferon(IFN)-γ, TNF-α, CXCL10, and CCL2); and Th-2 cytokines(IL-4, IL-10, and IL-1
receptor antagonist) in the serum of COVID-19 patients (Channappanavar and Perlman 2017; Chen et al., 2019, 2020; Coperchini, Chiovato, Croce, Magri, & Rotondi, 2020; Mazza et al., 2021), the possible association between inflammatory status and cognitive function in patients with COVID-19 should be investigated.

A functional neuroimaging study showed that increased IL-6 reduced the functional connectivity between striatum and ventromedial prefrontal cortex (vmPFC), and weakened the control of the prefrontal cortex over striatum, and caused cognitive dysfunction, anhedonia, verbal memory deficit, and motor slowing (Lin et al., 2020; Felger et al., 2016). Studies in the elderly also indicate a positive relationship between plasma IL-6 level and cognitive deficits such as prospective memory, working memory, executive functioning, processing speed, attention, orientation, immediate verbal recall, delayed recall or psychomotor speed, semantic fluency (Simpson et al., 2013; Heringa et al., 2014).

Increased TNF-α level can cause neuronal damage directly via activation of apoptosis and increased glutamate-mediated excitotoxicity (Bortolato, Carvalho, Sozynska, Perini, & McIntyre, 2015; Muneer, 2016; Chakrabarty, Torres, Bond & Yatham, 2019), and inhibit hippocampal long-term potentiation. Also, elevated TNF-α receptor signaling may lead to brain atrophy, hippocampal neuronal lack, and increased risk of cognitive deficits such as impairment in verbal memory, learning, synaptic plasticity, and inhibitory control (Sudheimer et al., 2014; Bortolato, Carvalho, Sozynska, Perini, & McIntyre, 2015; Chakrabarty, Torres, Bond & Yatham, 2019).

Higher levels of IL-8 than normal cause impaired memory and motor function, as well as slower cognitive and perceptual speed (Baune et al., 2008; Alley, Crimmins, Karlamangla, Hu, & Seeman 2008).

Studies show that IL-1β plays a key role in developing hippocampal-dependent learning and memory (Balschun et al., 2003; del Rey, Balschun, Wetzel, Randolf, & Besedovsky, 2013), but overexpression of IL-1β in hippocampus can also negatively affect spatial memory (Moore, Wu, Shaftel, Graham, & O’Banion, 2009; Spulber et al., 2009b).
Also, various studies show an increase in pro-inflammatory (IL-1β, IL-6, TNF-α) and anti-inflammatory cytokines (IL-1ra, IL-10) in the cerebrospinal fluid (CSF) and plasma of patients with depression, schizophrenia, bipolar disorder, and Alzheimer. In this patients, previous studies have found a correlation between peripheral IL-8, TNF-α, CCL2, CCL4 and brain thickness (Poletti et al., 2019); of IL-1β, IL-9, CCL5 with brain glutamate, Nacetylaspartate, and Myo-Inositol levels (Poletti et al., 2020); and of IL-8, IL-10, TNF-α, IFN-γ with white matter (WM) microstructure, with levels of inflammatory cytokines being inversely related with measures of WM integrity (Benedetti et al., 2016). There are also links between this WM phenotype and cognitive impairments such as working memory, verbal memory, inhibitory control, executive function, information processing speed, attention, and psychomotor coordination (Saczynski et al., 2010; Belarbi et al., 2012; Gabbita et al., 2012; Li et al., 2013; Sahin et al., 2015; Rosenblat et al., 2015; Poletti et al., 2015; Felger et al., 2016). Therefore, due to the increase of inflammatory cytokines in patients with Covid-19 and their effects on structural and functional brain connectivities, we can expect the mentioned cognitive impairments in these patients as well.

Few studies have examined cognitive function in these patients using cognitive tasks. For example, studies conducted by Almeria et al (2020) using Test de Aprendizaje Verbal Espa–na Complutense (TAVEC) with three lists for the Learning, Interference and Recognition to assess verbal memory; Visual Reproduction of the Wechsler Memory Scale–IV (WMSIV), Digits forward and Backward, Letter and Numbers, Trail Making Test A and B (TMT), Symbol Digit Modalities Test (SDMT), Stroop, Phonetic and Semantic fluency and Boston Naming Test from the NEURONORMA project (NN) showed that COVID-19 patients acquired lower scores in memory domains, attention, semantic fluency in working memory, and mental flexibility, and phonetic fluency and executive function subtests (Almeria, Cejudo, Sotoca, Deus, & Krupinski., 2020).

Zhou et al (2020) have done a study to evaluate the COVID-19's effects on cognitive functions and its association with inflammatory markers in recovered patients. They evaluated the cognitive functions of 29 subjects by the iPad-based online neuropsychological tests,
including the Trail Making Test (TMT), Sign Coding Test (SCT), Continuous Performance Test (CPT), and Digital Span Test (DST). In their study, only some parts of CPT tests showed significant group differences, which indicates cognitive deficits, especially sustained attention domain in patients recovered from COVID-19 (Zhou et al., 2020).

In a sample of 130 patients, Mazza et al (2021) examined cognitive functions using the Brief Assessment of Cognition in Schizophrenia (BACS) (Keefe et al., 2004), a broad battery evaluating verbal memory, verbal fluency, working memory (digit sequencing), selective attention and processing speed (symbol coding), psychomotor coordination (token motor task), and executive functions (Tower of London). According to previous studies, regardless of illness severity, most COVID-19 survivors showed cognitive impairments after 3 months, 78% of the sample showed poor performances in all the investigated domains. Executive functions and psychomotor coordination were impaired in 50% and 57% of the sample; information processing, verbal fluency, and working memory were impaired in around 30% of the sample (Mazza et al., 2021). The cognitive deficits observed in these patients were affected by systemic inflammation, which confirms the relationship between inflammation and cognitive deficits.

Therefore, it can be concluded that COVID-19 causes systemic inflammation and cognitive deficits in patients.

As a result of neuroinflammation, neurotransmitter metabolism, neuroplasticity, and brain structure and function are altered, the microglia are activated, and the hypothalamic-pituitary-adrenal (HPA) axis is dysregulated, which is the main component of the endocrinal system of the stress response and may affect cognition, memory task, and behavior. Now there is evidence that psychologic stressors may increase the production of proinflammatory cytokines, such as IL-1, IL-6, TNF-a, and interferon g (IFN-g), in humans and experimental animals. These cytokines can stimulate the HPA axis and lead to cognitive impairments caused by stress (Ownby, 2010). Therefore, inflammation may act as a mediator of stress-induced cognitive dysfunction, so with the increase of those factors, the probability of cognitive deficits due to stress will be higher.

In fact, stress triggers an immune response via the HPA axis, the system involved in releasing the cortisol hormone. Numerous studies demonstrate that high cortisol levels lead to memory
problems through effects on the hippocampal (Ownby, 2010), and stress-induced hippocampal damage has been demonstrated in animal experiments (Sapolsky, 1996).

On the other hand, a large number of patients recovered from COVID-19, healthy people, and medical staff usually suffer from stress for a short period, but they may experience prolonged psychophysical symptoms, such as depression, anxiety, and fear (Wang et al., 2020; Huang, Han, Luo, Ren, & Zhou, 2020; Balachandar, 2020). Studies also show that in specific situations, the brain's immune system may become chronically triggered. Especially, it is mentioned that chronic stress, trauma, neurodegenerative diseases, and aging cause changes in microglia's nature and protective capabilities (known as "microglial priming") (Norden, Muccigrosso, & Godbout, 2015; Fonken, Frank, Gaudet, & Maier, 2018), which is associated with the high releasing of pro-inflammatory cytokines such as TNF-a and IL-6, chemokines and reactive oxygen species (ROS) (Ransohoff & Perry 2009; Chatterjee, Biswas, Nag., Ramachandra, & Das Sarma, 2013), for extended durations. Increased microglial activity can cause extended lesions and impaired brain function (Norden, Muccigrosso, & Godbout, 2015). Therefore, systemic Inflammation caused by stress in Covid-19 patients may explain the pathogenesis of cognitive dysfunction, especially memory impairment in these patients.

6. Conclusion

Evidence demonstrates that the SARS CoV-2 virus can infect the brain and lead to neurological complications in patients. In this state, the brain's immune cells (microglia and cytokines) produce high levels of pro-inflammatory factors in various brain regions (Russo, Barlati, & Bosetti, 2010), which can damage brain cells.

Indeed, several studies have concluded that systemic inflammation along with a significant release of cytokines (known as "cytokine storm") causes brain damage due to SARS-CoV-1(Xu et al., 2005; Li et al., 2016b). In such a way that recent studies show an increase in the level of proinflammatory cytokines such as IL-1,6,8,10 and TNF-α factors in the brains of people with COVID-19 (Channappanavar and Perlman, 2017; Chen et al., 2019, 2020). Studies show IL-8 levels higher than normal cause impaired memory and motor function, as well as slower
cognitive and perceptual speed (Baune et al., 2008; Alley, Crimmins, Karlamangla, Hu, & Seeman, 2008; Li et al., 2013; Mun, Kim, Choi, & Jang, 2016).

Also, other findings indicate a positive relationship between plasma IL-6 level and cognitive deficits such as prospective memory, working memory, executive functioning, processing speed, attention, orientation, immediate verbal recall, delayed recall or psychomotor speed, semantic fluency (Li et al., 2013; Simpson et al., 2013; Heringa et al., 2014; Rosenblat et al., 2015; Mun, Kim, Choi, & Jang, 2016).

Considering that limbic and associated brain structures such as amygdala, anterior cingulate cortex (ACC), hippocampi, prefrontal cortex and, basal ganglia (structures that play essential roles in cognitive processes like memory, attention, emotion, and perception) contain many enzymes and cytokines involved in an inflammatory response (Raz & Rodrigue, 2006; Sudheimer et al., 2014; Rosenblat et al., 2015; Wang et al., 2015; Bortolato, Carvalho, Soczynska, Perini, & McIntyre, 2015; Elias et al., 2017; Acuff et al., 2018), therefore, according to the available evidence, there is a probability of occurrence of these cognitive defects in these patients, which needs further investigation.

On the other hand, various cognitive defects such as attention, working memory, executive function, processing speed impairments, anhedonia, and motor slowing deficit disorder following an increase in the level of cytokines such as TNF-α and IL-6 has been observed in major depressive disorder, bipolar disorder, and schizophrenia patients (Saczynski et al., 2010; Belarbi et al., 2012; Gabbana et al., 2012; Li et al., 2013; Sahin et al., 2015; Rosenblat et al., 2015; Felger et al., 2016). So these findings can confirm previous findings based on the occurrence of these cognitive impairments in these patients following cytokine storms have occurred.

According to the above evidence-based on the occurrence of cytokine storm and their effects in areas involved in cognitive processes such as limbic and associated brain structures, we can expect cognitive deficits in covid-19 cured patients. So, the possible association between inflammatory status and cognitive function in patients with COVID-19 should be investigated.
over a long period of time to provide the best therapeutic strategies for COVID-19 survivors (Benedetti et al., 2020b).

Therefore, it is suggested that electrophysiological tools, such as quantitative electroencephalography (QEEG), event-related potential (ERP), neurofeedback, electrical stimulation of the brain includes transcranial stimulation with direct electric current (tDCS), transcranial random noise stimulation (tRNS), and transcranial electrical stimulation with alternating current (tACS), be used in future to evaluate and intervene effectively to improve cognitive abilities such as memory, learning, attention, processing speed in COVID-19 recoverers (Chabot, di Michele, Prichep, & John, 2001; Monastra, Monastra, & George, 2002; Vourvopoulos & Badia. 2016; Moon, Kim, Hwang, Lee, & Kwon, 2019; Harris, Jacoby, Remington, Becker, & Mattingley, 2020).

Also, modulation of pro and anti-inflammatory cytokines may prevent cognitive impairment and improve brain function (Torres et al., 2010).

Compliance with ethical guidelines

This article is a review article, and its information is available, and no data were obtained during the study.

Funding

This study did not receive any funding from any organization.

Authors’ contributions

Gholamreza Chalabianloo and Zahra Keshtgar designed the project and prepared and edited the manuscript. Also, Gholamreza Chalabianloo and Niloofar Esmaeili corrected grammatical errors in the revised version. All authors read and accepted the final version.

Conflict of interest

The authors declared no conflicts of interest.
Reference

Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., ... & Ning, Q. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. *Bmj, 368.* [DOI:10.1136/bmj.m1091] [PMID] [PMCID]

del Rey, A., Balschun, D., Wetzel, W., Randolf, A., & Besedovsky, H. O. (2013). A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. *Brain, behavior, and immunity, 33,* 15-23. [doi.org/10.1016/j.bbi.2013.05.011] [PMID]

pathogens of the central nervous system?. *Viruses, 12*(1), 14.[DOI:10.3390/v12010014] [PMID] [PMCID]

Moriguchi, T., Harii, N., Goto, J., Harada, D., Sugawara, H., Takamino, J., ... & Shimada, S. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-
2. *International Journal of Infectious Diseases*. [DOI:10.1016/j.ijid.2020.03.062] [PMID] [PMCID]

environmental research and public health, 17(5), 1729. [DOI:10.3390/ijerph17051729] [PMID] [PMCID]

Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., ... & Gao, G. F. (2017). Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nature communications, 8(1), 1-9. [DOI:10.1038/ncomms15092] [PMID] [PMCID]

Zhao, J., Rudd, A., & Liu, R. (2020). Challenges and potential solutions of stroke care during the coronavirus disease 2019 (COVID-19) outbreak. [DOI:10.1161/STROKEAHA.120.029701] [PMID] [PMCID]

Tables and Figures:

TABLE 1 Human coronaviruses and neurological complications caused by them (Sepehrinezhad, Shahbazi & Negah, 2020)

<table>
<thead>
<tr>
<th>Human coronaviruses</th>
<th>Study</th>
<th>Clinical manifestations and neurological defects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoV-229E</td>
<td>Brain investigation after death</td>
<td>Neuroinvasion in multiple sclerosis</td>
<td>(Arbour, Newcombe, & Talbot, 2000)</td>
</tr>
<tr>
<td>CoV-OC43</td>
<td>Brain investigation after death or CSF sampling</td>
<td>Neuroinvasion in multiple sclerosis, demyelination, and encephalomyelitis</td>
<td>(Arbour, Newcombe, & Talbot, 2000; Yeh, Collins, Cohen, Duffner & Faden, 2004)</td>
</tr>
<tr>
<td>SARS-CoV</td>
<td>Clinical human and after death examination</td>
<td>Generalized tonic-clonic seizure, CSF infection, glial cells hyperplasia, neural cell necrosis, neuroinflammation, brain edema</td>
<td>(Gu et al, 2005; Xu et al, 2005; Lau et al, 2004)</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Clinical human examination</td>
<td>Ataxia, confusion, dizziness, headache</td>
<td>(Algahtani, Subahi, & Shirah, 2016; Kim et al, 2017)</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Clinical human examination</td>
<td>Headaches, nausea, confusion, dizziness, impaired consciousness, ataxia, acute cerebrovascular diseases, vomiting, epilepsy, and skeletal muscle symptoms</td>
<td>(Guan et al, 2020; Li, Bai & Hashikawa, 2020; Mao et al, 2020a; Mao et al, 2020b)</td>
</tr>
</tbody>
</table>
FIGURE 1: Cytokine storm in SARS-CoV-2 infection (Chen et al., 2019).

FIGURE 2: An overview of the SARS-CoV-2 infection effects on the body's organs. Like the SARS-CoV-1 virus, the cellular receptor for SARS-CoV-2 is the ACE2 (Hoffmann et al., 2020), which is highly expressed in the olfactory bulb, eyes, heart, vascular, kidney (Harmer, Gilbert, Borman, & Clark, 2002), liver, lung, and nasopharynx.
FIGURE 3: Different routes of cytokines release in severe COVID-19 patients: through direct viral proliferation in infected cells (AEC2) or an indirect process involving neuro-immunopathology (Gu et al., 2005; Xu et al., 2005; Guo, Korteweg, McNutt, & Gu, 2008; Li et al., 2016b; Chen et al., 2019, 2020).