Accepted Articles                   Back to the articles list | Back to browse issues page


XML Print


1- Department of Behavioral and Cognitive Science in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.
2- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran.
Abstract:  
Studies on pain are generally conducted for two purposes: first, to study patients with pain who have physical changes due to nerve and muscle lesions, and second, to regain the appropriate kinematic post-pain pattern. The present study aimed to investigate the effect of pain on the coordination variability pattern and throw accuracy. Participants included 30 people with a mean age of 18-25 years who volunteered to participate in the study. Individuals were randomly divided into three groups of local pain, remote pain, and control group. Without pain, participants practiced and acquired skills in 10 blocks of 15 trials. In the retention and transition phase, which were associated with pain, in their respective groups, included 1 hour, 24- hour, and 1- week acquisition; they were re-tested twice in a 15-block trial, which was once with and without pain. The results revealed that pain did not affect the throwing accuracy (p = 0.469). Besides, in the phase of decreasing acceleration in throwing, movement variability pattern in the pain-related groups in the shoulder and elbow joints (p = 0.000), elbow and wrist (p = 0.000), were more than the painless groups. Based on the results, it can be said that the increase in variability in pain-related groups is due to the different strategies and patterns that individuals use to avoid pain. Also, despite the pain, the nervous system attempts to increase the variability find the least painful pattern of movement and reduces this variability over time and using a repetitive pattern.
     

Received: 2021/01/13 | Accepted: 2018/03/15

References
1. El-Khatib AA, Barakat NA, Youssef NA, Samir NA. Bioaccumulation of heavy metals air pollutants by urban trees. Int J phytoremediation. 2020; 22(2):210-22. [DOI:10.1080/15226514.2019.1652883] [PMID]
3. [PMID]
4. Hatami-Manesh M, Mortazavi S, Solgi E, Mohtadi A. Assessing the capacity of trees and shrubs species to accumulate of particulate matter (PM10, PM2. 5 and PM0. 2). Iranian J Health Environ. 2019; 12(1):1-16.
5. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=477023
6. Nowak DJ, Hirabayashi S, Doyle M, McGovern M, Pasher J. Air pollution removal by urban forests in Canada and its effect on air quality and human health. Urban ForUrban Green. 2018; 29:40-8. [DOI:10.1016/j.ufug.2017.10.019]
8. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015; 525(7569):367-71. [DOI:10.1038/nature15371] [PMID]
10. [PMID]
11. Weinmayr G, Pedersen M, Stafoggia M, Andersen ZJ, Galassi C, Munkenast J, et al. Particulate matter air pollution components and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts of Air Pollution Effects (ESCAPE). Environ int. 2018; 120:163-71. [DOI:10.1016/j.envint.2018.07.030] [PMID]
13. [PMID]
14. Gouveia N, Junger WL, Romieu I, Cifuentes LA, de Leon AP, Vera J, et al. Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities. Environ Pollut. 2018; 232:385-91. [DOI:10.1016/j.envpol.2017.08.125] [PMID]
16. [PMID]
17. Sevik H, Cetin M, Ozel HB, Akarsu H, Cetin IZ. Analyzing of usability of tree-rings as biomonitors for monitoring heavy metal accumulation in the atmosphere in urban area: a case study of cedar tree (Cedrus sp.). Environ Monit Assess. 2020; 192(1):23. [DOI:10.1007/s10661-019-8010-2] [PMID]
19. [PMID]
20. Kulkarni P, Baron PA, Willeke K. Aerosol measurement: principles, techniques, and applications. 3thed. Somerset: John Wiley & Sons; 2011. [DOI:10.1002/9781118001684]
22. Teiri H, Pourzamani H, Hajizadeh Y. Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere. 2018; 197:375-81. [DOI:10.1016/j.chemosphere.2018.01.078] [PMID]
24. [PMID]
25. Xu J, Jing B, Zhang K, Cui Y, Malkinson D, Kopel D, et al. Heavy metal contamination of soil and tree-ring in urban forest around highway in Shanghai, China. Hum Ecol Risk Assess: Int J. 2017; 23(7):1745-62. [DOI:10.1080/10807039.2017.1340826]
27. Mohammadi A, Mokhtari M, Arani AM, Taghipour H, Hajizadeh Y, Fallahzadeh H. Biomonitoring levels of airborne metals around Urmia Lake using deciduous trees and evaluation of their tolerance for greenbelt development. Environ SciPollut Res. 2018; 25(21):21138-48. [DOI:10.1007/s11356-018-1899-0] [PMID]
29. [PMID]
30. Shi J, Zhang G, An H, Yin W, Xia X. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos Pollut Res. 2017;8(5):836-42. [DOI:10.1016/j.apr.2017.01.011]
32. Brignole D, Drava G, Minganti V, Giordani P, Samson R, Vieira J, et al. Chemical and magnetic analyses on tree bark as an effective tool for biomonitoring: A case study in Lisbon (Portugal). Chemosphere. 2018; 195:508-14. [DOI:10.1016/j.chemosphere.2017.12.107] [PMID]
34. [PMID]
35. Kuddus M, Kumari R, Ramteke PW. Studies on air pollution tolerance of selected plants in Allahabad city, India. J Environ Res Manag. 2011; 2(3):042-6.
36. http://www.e3journals.org/JERM
37. Yap C, Ismail A, Tan S, Omar H. Correlations between speciation of Cd, Cu, Pb and Zn in sediment and their concentrations in total soft tissue of green-lipped mussel Perna viridis from the west coast of Peninsular Malaysia. Environ Int. 2002; 28(1-2):117-26. [DOI:10.1016/S0160-4120(02)00015-6]
38. Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi S, et al. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res. 2014; 21(7):5076-85. [DOI:10.1007/s11356-013-2393-3] [PMID]
40. [PMID]
41. Liu Y-J, Zhu Y-G, Ding H. Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a Metal Accumulation Index (MAI). Environ Pollut. 2007; 145(2):387-90. [DOI:10.1016/j.envpol.2006.05.010] [PMID]
43. [PMID]
44. Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980; 14(8):975-1001. [DOI:10.1016/0043-1354(80)90143-8]
46. Yi Y, Yang Z, Zhang S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut. 2011; 159(10):2575-85. [DOI:10.1016/j.envpol.2011.06.011] [PMID]
48. [PMID]
49. Wang J, Liu W, Yang R, Zhang L, Ma J. Assessment of the potential ecological risk of heavy metals in reclaimed soils at an opencast coal mine. Disaster Adv. 2013;6(S3):366-77.
50. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wang+J%2C+Liu+W%2C+Yang+R%2C+Zhang+L%2C+Ma+J.+Assessment+of+the+potential+ecological+risk+of+heavy+metals+in+reclaimed+soils+at+an+opencast+coal+mine.+Disaster+Adv.+2013%3B6%28S3%29%3A366-77.&btnG=
51. Ali MM, Ali ML, Islam MS, Rahman MZ. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol, Monit Manag. 2016; 5:27-35. [DOI:10.1016/j.enmm.2016.01.002]
53. Pedersen F, Bjørnestad E, Andersen HV, Kjølholt J, Poll C. Characterization of sediments from Copenhagen Harbour by use of biotests. Water Sci Technol. 1998; 37(6-7):233-40. [DOI:10.2166/wst.1998.0757]
55. Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, et al. A new method for assessment of sediment-associated contamination risks using multivariate statistical approach. MethodsX. 2018; 5:268-76. [DOI:10.1016/j.mex.2018.03.005] [PMID] [PMCID]
57. [PMID]
58. MacDonald DD, Ingersoll CG, Berger TA. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol. 2000; 39(1):20-31. [DOI:10.1007/s002440010075] [PMID]
60. [PMID]
61. Taghi pour M,. [Spatial variation of Selected heavy metals in Some surface soils of Hamedan province (Persian)]. [dissertation] Isfahan: College of Agricultural Engineering, Isfahan University of Technology; 2009.https://ganj.irandoc.ac.ir/#/search?basicscope=1&keywords=%D8%AA%D8%BA%D9%8A%D9%8A%D8%B1%D8%A7%D8%AA%20%D9%85%D9%83%D8%A7%D9%86%D9%8A%20%D8%A8%D8%B1%D8%AE%D9%8A%20%D9%81%D9%84%D8%B2%D8%A7%D8%AA%20%D8%B3%D9%86%DA%AF%D9%8A%D9%86%20%D8%AF%D8%B1%20%D8%AE%D8%A7%D9%83%20%D9%87%D8%A7%D9%8A%20%D8%B3%D8%B7%D8%AD%D9%8A%20%D8%A8%D8%AE%D8%B4%D9%8A%20%D8%A7%D8%B2%20%D8%A7%D8%B3%D8%AA%D8%A7%D9%86%20%D9%87%D9%85%D8%AF%D8%A7%D9%86
62. Chen X, Xia X, Zhao Y, Zhang P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater. 2010; 181(1-3):640-46. [DOI:10.1016/j.jhazmat.2010.05.060] [PMID]
64. [PMID]
65. Kleckerová A, Docekalova H. Dandelion plants as a biomonitor of urban area contamination by heavy metals. 2014; 8(1):157-64
66. 22059/IJER.2014.705
67. Nazarpour A, Ghanavati N, Babaenejad T. [Evaluation of the level of pollution and potential ecological risk of some heavy metals in surface soils in the Ahvaz oil-field (Persian)]. Iran J Health Environ. 2017; 10(3):391-400.
68. http://ijhe.tums.ac.ir/article-1-5924-en.html
69. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature. 2001; 409(6820):579. [DOI:10.1038/35054664] [PMID]
71. [PMID]
72. Alahabadi A, Ehrampoush MH, Miri M, Aval HE, Yousefzadeh S, Ghaffari HR, et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere. 2017; 172:459-67. [DOI:10.1016/j.chemosphere.2017.01.045] [PMID]
74. [PMID]
75. Hu Y, Wang D, Wei L, Zhang X, Song B. Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicol Environ Saf. 2014; 110:82-8. [DOI:10.1016/j.ecoenv.2014.08.021] [PMID]
77. [PMID]
78. Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environ pollut. 2011; 159(12):3560-70. [DOI:10.1016/j.envpol.2011.08.008] [PMID]
80. [PMID]
81. Mortazavi S, Ghasemi Aghbash F, Naderi Motiy R. [The feasibility of biomonitoring of heavy metals by wooden species of urban areas (Persian)]. J For ResDev. 2019; 5(1):55-71.
82. 30466/JFRD.2019.120687
83. Romiayei L, payandeh K. [Study of heavy metal accumulation in water, surface sediment and 4 aquatic plant species of Karkheh River (Persian)]. Wetl Ecobiol. 2017; 9(3):69-84. http://jweb.iauahvaz.ac.ir/article-1-620-en.html

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb