Accepted Articles                   Back to the articles list | Back to browse issues page

XML Print

1- Laboratory technician of the Research Institute of Cognitive Sciences and Brain
2- Assistant Professor​
Consumers’ prior experiences shape an episodic memory which largely influences their decision-making process. This episodic memory is mainly linked to cognitive and emotional perception and we know that a brand image influences our cognitive and emotional perception. Nevertheless, it has not been well described how autobiographical memories of brand images differ from those of other types of images.  In this study, we hypothesized that brand pictures have a higher chance to create false memories as compared to neutral ones. We investigated this hypothesis using the Deese–Roediger–McDermott paradigm with lists of brand pictures from the local market and associated neutral images from the international affective picture system. Thirty graduate students were exposed to image stimuli followed by a distractor task and a recognition task. After the test of normality, reaction times, and false recognition rates of brands and neutral images were statistically compared using a pairwise t-test. The results showed a significant decrease in reaction times and an increase in false recognition rates of brand pictures as compared to neutral ones. Interestingly, the effect of gender on the creation of false memory by autobiographical brand images was not significant. We hope these findings could pave the way for a better understanding of the false memory mechanism.

Received: 2020/10/24 | Accepted: 2018/03/15

1. Aigner, E., T. K. Felder, H. Oberkofler, et al. (2013). Glucose acts as a regulator of serum iron by increasing serum hepcidin concentrations. The Journal of nutritional biochemistry 24(1): 112-117. [DOI:10.1016/j.jnutbio.2012.02.017]
2. Backe, M. B., I. W. Moen, C. Ellervik, et al. (2016). Iron regulation of pancreatic beta-cell functions and oxidative stress. Annual review of nutrition 36: 241-273. [DOI:10.1146/annurev-nutr-071715-050939]
3. Baluchnejadmojarad, T., Z. Kiasalari, S. Afshin-Majd, et al. (2017). S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. European journal of pharmacology 794: 69-76. [DOI:10.1016/j.ejphar.2016.11.033]
4. Berg, D., M. Gerlach, M. Youdim, et al. (2001). Brain iron pathways and their relevance to Parkinson's disease. Journal of neurochemistry 79(2): 225-236. [DOI:10.1046/j.1471-4159.2001.00608.x]
5. Caret, J.-C., P.-F. Bougnères and E. P. S. Group (1996). Treatment of prediabetic patients with insulin: experience and future. Hormones 45(Suppl. 1): 44-47. [DOI:10.1159/000184829]
6. Chand, S. K., R. G. Singh, S. A. Pendharkar, et al. (2018). Iron: a strong element in the pathogenesis of chronic hyperglycaemia after acute pancreatitis. Biological trace element research 183(1): 71-79. [DOI:10.1007/s12011-017-1131-y]
7. Crane, P. K., R. Walker, R. A. Hubbard, et al. (2013). Glucose levels and risk of dementia. New England Journal of Medicine 369(6): 540-548. [DOI:10.1056/NEJMoa1215740] [PMCID]
8. Di Marco, E., J. C. Jha, A. Sharma, et al. (2015). Are reactive oxygen species still the basis for diabetic complications? Clinical Science 129(2): 199-216. [DOI:10.1042/CS20150093]
9. Du, F., Z.-M. Qian, Q. Luo, et al. (2015). Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Molecular neurobiology 52(1): 101-114. [DOI:10.1007/s12035-014-8847-x]
10. Dwyer, B. E., L. R. Zacharski, D. J. Balestra, et al. (2009). Getting the iron out: phlebotomy for Alzheimer's disease? Medical hypotheses 72(5): 504-509. [DOI:10.1016/j.mehy.2008.12.029] [PMCID]
11. Farajdokht, F., M. Soleimani, S. Mehrpouya, et al. (2015). The role of hepcidin in chronic mild stress-induced depression. Neuroscience letters 588: 120-124. [DOI:10.1016/j.neulet.2015.01.008]
12. Ganz, T. and E. Nemeth (2012). Hepcidin and iron homeostasis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1823(9): 1434-1443. [DOI:10.1016/j.bbamcr.2012.01.014] [PMCID]
13. Garton, T., R. F. Keep, Y. Hua, et al. (2016). Brain iron overload following intracranial haemorrhage. Stroke and vascular neurology 1(4): 172-184. [DOI:10.1136/svn-2016-000042] [PMCID]
14. Gong, J., F. Du, Z. M. Qian, et al. (2016). Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radical Biology and Medicine 90: 126-132. [DOI:10.1016/j.freeradbiomed.2015.11.016]
15. Hatunic, M., F. M. Finucane, A. M. Brennan, et al. (2010). Effect of iron overload on glucose metabolism in patients with hereditary hemochromatosis. Metabolism 59(3): 380-384. [DOI:10.1016/j.metabol.2009.08.006]
16. Kalalian-Moghaddam, H., T. Baluchnejadmojarad, M. Roghani, et al. (2013). Hippocampal synaptic plasticity restoration and anti-apoptotic effect underlie berberine improvement of learning and memory in streptozotocin-diabetic rats. European journal of pharmacology 698(1-3): 259-266. [DOI:10.1016/j.ejphar.2012.10.020]
17. Ke, Y. and Z. M. Qian (2007). Brain iron metabolism: neurobiology and neurochemistry. Progress in neurobiology 83(3): 149-173. [DOI:10.1016/j.pneurobio.2007.07.009]
18. Kumar Datusalia, A. and S. Sunder Sharma (2016). NF-κB inhibition resolves cognitive deficits in experimental type 2 diabetes mellitus through CREB and glutamate/GABA neurotransmitters pathway. Current neurovascular research 13(1): 22-32. [DOI:10.2174/1567202612666151030104810]
19. Ma, P., X. Y. Mao, X. L. Li, et al. (2015). Baicalin alleviates diabetes‑associated cognitive deficits via modulation of mitogen-activated protein kinase signaling, brain‑derived neurotrophic factor and apoptosis. Molecular medicine reports 12(4): 6377-6383. [DOI:10.3892/mmr.2015.4219]
20. Matrone, C., M. Djelloul, G. Taglialatela, et al. (2015). Inflammatory risk factors and pathologies promoting Alzheimer's disease progression: is RAGE the key. Histol Histopathol 30(2): 125-139.
21. Murray, C. A. and M. A. Lynch (1998). Evidence that increased hippocampal expression of the cytokine interleukin-1β is a common trigger for age-and stress-induced impairments in long-term potentiation. Journal of Neuroscience 18(8): 2974-2981. [DOI:10.1523/JNEUROSCI.18-08-02974.1998] [PMCID]
22. Nasri, S., M. Roghani, T. Baluchnejadmojarad, et al. (2012). Chronic Cyanidin‐3‐glucoside Administration Improves Short‐term Spatial Recognition Memory but not Passive Avoidance Learning and Memory in Streptozotocin‐diabetic Rats. Phytotherapy Research 26(8): 1205-1210. [DOI:10.1002/ptr.3702] [PMID]
23. Nicolas, G., M. Bennoun, I. Devaux, et al. (2001). Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proceedings of the National Academy of Sciences 98(15): 8780-8785. [DOI:10.1073/pnas.151179498] [PMID] [PMCID]
24. Park, C. H., E. V. Valore, A. J. Waring, et al. (2001). Hepcidin, a urinary antimicrobial peptide synthesized in the liver. Journal of biological chemistry 276(11): 7806-7810. [DOI:10.1074/jbc.M008922200] [PMID]
25. Poli, M., M. Asperti, P. Ruzzenenti, et al. (2014). Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Frontiers in pharmacology 5: 86. [DOI:10.3389/fphar.2014.00086] [PMID] [PMCID]
26. Roghani, M., M. T. Joghataie, M. R. Jalili, et al. (2006). Time course of changes in passive avoidance and Y-maze performance in male diabetic rats. Iranian Biomedical Journal 10(2): 99-104.
27. Smith, M. A., P. L. Harris, L. M. Sayre, et al. (1997). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences 94(18): 9866-9868. [DOI:10.1073/pnas.94.18.9866] [PMID] [PMCID]
28. Van Campenhout, A., C. Van Campenhout, A. R. Lagrou, et al. (2006). Impact of diabetes mellitus on the relationships between iron‐, inflammatory‐and oxidative stress status. Diabetes/metabolism research and reviews 22(6): 444-454. [DOI:10.1002/dmrr.635] [PMID]
29. Vecchi, C., G. Montosi, C. Garuti, et al. (2014). Gluconeogenic signals regulate iron homeostasis via hepcidin in mice. Gastroenterology 146(4): 1060-1069. e1063. [DOI:10.1053/j.gastro.2013.12.016] [PMID] [PMCID]
30. Vela, D. (2018). The dual role of hepcidin in brain iron load and inflammation. Frontiers in neuroscience 12: 740. [DOI:10.3389/fnins.2018.00740] [PMCID]
31. Wang, H., H. Li, X. Jiang, et al. (2014). Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes 63(5): 1506-1518. [DOI:10.2337/db13-1195] [PMID]
32. Wang, Q., F. Du, Z.-M. Qian, et al. (2008). Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology 149(8): 3920-3925. [DOI:10.1210/en.2007-1626] [PMID] [PMCID]
33. Ward, R. J., F. A. Zucca, J. H. Duyn, et al. (2014). The role of iron in brain ageing and neurodegenerative disorders. The Lancet Neurology 13(10): 1045-1060. [DOI:10.1016/S1474-4422(14)70117-6]
34. Xiong, X.-Y., L. Liu, F.-X. Wang, et al. (2016). TLR4/MyD88 Mediated Signaling of Hepcidin Expression Causing Brain Iron Accumulation, Oxidative Injury, and Cognitive Impairment After Intracerebral Hemorrhage. Circulation: CIRCULATIONAHA. 116.021881. [DOI:10.1161/CIRCULATIONAHA.116.021881] [PMID]
35. Zhang, F.-L., H.-M. Hou, Z.-N. Yin, et al. (2017). Impairment of hepcidin upregulation by lipopolysaccharide in the interleukin-6 knockout mouse brain. Frontiers in molecular neuroscience 10: 367. [DOI:10.3389/fnmol.2017.00367]
36. Zhao, Y., Z. Xin, N. Li, et al. (2018). Nano-Liposomes of Lycopene Reduces Ischemic Brain Damage in Rodents by Regulating Iron Metabolism. Free Radical Biology and Medicine. [DOI:10.1016/j.freeradbiomed.2018.05.082]
37. Zhou, Y.-F., C. Zhang, G. Yang, et al. (2017). Hepcidin protects neuron from hemin-mediated injury by reducing iron. Frontiers in physiology 8: 332. [DOI:10.3389/fphys.2017.00332] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2020 All Rights Reserved | Basic and Clinical Neuroscience

Designed & Developed by : Yektaweb