Accepted Manuscript

Title: Psychometric Properties of the Persian Word Pairs Task for Declarative Memory Assessment

Running Title: Persian Word Pairs Task for Declarative Memory Assessment

Authors: Maryam Malekian1, Yalda Kazemi2, Talieh Zarifian3,*

1. Phd Student in Speech Therapy University of Social Welfare and Rehabilitation Sciences, Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

2. Assistant Professor Department of Speech Therapy, Isfahan University of Medical Sciences, Department of Speech Therapy, Isfahan University of Medical Sciences, Isfahan, Iran.

3. Assistant Professor University of Social Welfare and Rehabilitation Sciences, Department of Speech Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran

*Corresponding Author: Email: t.zarifian@yahoo.com

To appear in: Basic and Clinical Neuroscience

Received date: 2020/05/20

Revised date: 2020/10/20

Accepted date: 2020/10/26
This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Basic and Clinical Neuroscience provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as a published article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:

DOI: http://dx.doi.org/10.32598/bcn.2021.2585.1
Abstract

Objective: According to the declarative/procedural model, the semantic aspect of language depends on the brain structures responsible for declarative memory. The word pairs task is a common tool for evaluating declarative memory. The current study aimed to design a valid and reliable task for evaluating declarative memory in Persian children at learning and retention stages and to investigate its relationship with the semantic aspect of language.

Method: A panel of experts agreed on the content validity of the proposed task. The reliability of the task was determined using internal consistency and test-retest reliability. A total of 31 typically developing children aged 7-9 years of age participated in this study.

Results: The content validity of all the 42 word pairs calculated as one. The test-retest reliability showed a correlation coefficient of .825 (P < 0.001). The task showed acceptable internal consistency (Cronbach’s alpha 0.880). The results of correlation analysis showed no significant relationship between declarative memory and semantic aspect. The regression analysis, however, showed that the retention stage could explain 24.2% of the variation of semantic aspect.

Conclusion: It seems that the word pairs task has good validity and reliability for evaluating declarative memory. The task applied to evaluate the semantic aspect can be one of the potential causes for the lack of a relationship between semantic aspect and declarative memory. The participant score in the retention stage can be predicted concerning his/her performance at the semantic aspect.

Keywords: Declarative memory, Word pairs task, Semantic, Content validity
Highlights

The proposed task has several advantages as follows:

- Good validity and reliability for Evaluating different stages of declarative memory, including learning, immediate recall, delayed recall, delayed recognition, and retention.

- Children's performance improves with age at different stages of the task.

- The retention stage can predict the percent changes in the semantic aspect of language.
Introduction

One of the main types of long-term memory is declarative memory consisting of episodic memory and semantic memory. Episodic memory is responsible for learning, storing, and recalling knowledge related to personal events. On the other hand, the semantic aspect involves facts and concepts (Desmottes, Meulemans, & Maillart, 2016). The combination of these two memories shapes the declarative knowledge subjected to the person's conscious awareness (Ullman, 2015).

The declarative/procedural (DP) model proposed by Ullman and Pierpont argues that language depends on several structures in the brain, which are responsible for other functions. For instance, the mental lexicon, a fundamental component of any given language responsible for storing lexical knowledge, is mainly dependent on the intact function of the temporal lobe which is the brain area involved in declarative memory (Ullman, 2004, 2015). Learning of the phonological form and meaning and sound-meaning mapping for each lexical item takes place in the declarative memory system. Therefore, it is expected to find a significant relationship between declarative memory and the person’s performance in the lexical tasks. Moreover, the grammar of any given language, which is related to combining lexical items into more complex representations, is controlled by brain structures involved in the procedural memory (Ullman, 2001, 2004; Ullman & Pierpont, 2005).

Learning in declarative memory can be evaluated by verbal and non-verbal tasks (Ullman & Pullman, 2015). The word pairs (WP) task is commonly used to evaluate declarative memory in the verbal area (Lum, Conti-Ramsden, Page, & Ullman, 2012). The WP task requires learning the phonemes and meaning of each word, sound-meaning mapping, and creating semantic associations between the word
pairs. Although all of these components depend on the mental lexicon of a language, they occur in the medial temporal lobe and hippocampus, which are the same areas for learning and recall in a declarative memory system (Lum, Gelgic, & Conti-Ramsden, 2010; Squire & Wixted, 2011).

The WP task usually has a predefined procedure that involves the learning, immediate recall, delayed recall, and delayed recognition stages (Cohen, 1997).

During the learning stage, the children are presented with an oral list of word pairs. After each presentation, the children are asked to recall the second words from the list of the word pairs. The learning stage usually includes repeated three to five times of before-mentioned task. Each of these repetitions is called a "trial". In the next stage, the children are asked to recall both words in each pair (immediate recall). After an interval of 30-minute, the participants are then asked to recall the whole list of word pairs again (delayed recall). Next, the previous list of word pairs is presented along with other word pairs as a distractor to determine whether the child can identify the target items from all items (delayed recognition). In WP task, the level of verbal information learning is determined by averaging the total number of words recalled accurately during the initial three to five trials, and during the immediate recall, delayed recall, and delayed recognition stages (Lum et al., 2012).

These stages focused on the initial stages of learning, where the acquired knowledge is generally reviewed after a few minutes. However, since the main goal of learning is to retain information beyond a couple of minutes, some tests also account for the retention stage. The retention stage is generally examined, 24 hours after the initial learning. (Lum et al., 2010). In this stage, the participants are presented with a list of distractor items along with a list of initial stimulants, and they are asked to
determine which stimulus was previously presented and which one is new (Lukács, Kemény, Lum, & Ullman, 2017).

The evaluation of declarative memory is one of the subscales of any given memory test. In 1990, Sheslow and Adams proposed the Wide Range Assessment of Memory and Learning (WRAML) scale for children aged 5-16 years. This scale also includes a verbal learning subscale for evaluating the learning, delayed recall, and recognition stages of declarative memory. They computed the internal consistency of this scale as ranges from 0.81 to 0.92 in different stages and test-retest reliability ranged from 0.59 to 0.77 (Adams, 2010).

In 1994, Delis et al. proposed the California Verbal Learning Test- Children’s Version (CVLT-C) scale for children aged 5-16 years, with an average reliability of 0.72 for all age groups. The scale includes five trials in the learning stage, a delayed recall stage, and a recognition stage for assessing declarative memory (Fridlund & Delis, 1994).

In 1997, Cohen proposed the Children’s Memory Scale (CMS) to evaluate memory and learning ability in children aged 5-16 years. The WP task used in this scale includes the learning, immediate recall, delayed recall, and recognition stages. The internal consistency coefficients for this WP task in different age groups were reported between 0.71 and 0.91 for the verbal and non-verbal subtests, between 0.72 and 0.84 for the delayed recall task, and between 0.75 and 0.79 for the delayed recognition task (Cohen, 1997).

In Iran, the only test containing a task similar to the WP task for evaluating declarative memory is the Wechsler Memory Scale-Revised (WMS-R) that evaluates the memory of people aged 16-90 years. This scale has been standardized in Iran, and its reliability for the subtests ranges from 0.28 to 0.92. One of the
subtests of this test involves recalling verbal pairs, including eight word pairs, four semantically related and four unrelated (Orangi, Atefvahid, & Ashayeri, 2002). This scale evaluates two stages of initial learning and delayed learning and does not include other learning stages, i.e. immediate recall, recognition, and retention. Also, it is not appropriate for individuals under 16 years of age.

Despite the importance assumed for the relationship between accurate performance in declarative memory and mental lexicon in the declarative/procedural (DP) model, there is no Persian task evaluating the performance of declarative memory of children in different stages of learning. The main goal of the current study was to propose a task for evaluating declarative memory in different stages of learning, along with determining the validity and reliability of the proposed task. The second goal was to explore the trend of changes in different stages of the task across different age groups.

And finally, based on the assumed relationship between declarative memory and semantic aspect of language, the study utilized the regression analysis to explore the role of declarative memory in explaining the semantic aspect of language.

Methodology

The current study consists of two main stages. First, developing the Word Pairs (WP) task and then, evaluating its psychometric properties.

Task development

The word pairs were extracted from the book "Basic Persian Words"(Nematzadeh S, Dadras M, Dastjerdi Kazemi M, & Mansoorizadeh.M, 2012). The book provides words classified in four levels based on their frequency, for each grade in elementary school. The words in the first level have the highest frequency, and children are
familiar with all words in each level. In this study, 82 high-frequency word pairs with unrelated meanings were selected for the learning, recognizing, and retention stages. In the word selection stage, initially, the words in the first level, and several words from the second level were selected. The phonologically dissimilar words were selected based on onset and rhyme. Also, the distractors used in the recognition and retention stages had no semantic relationship with the words in learning, recall, and recognition stages. Word selection was carried out based on the network model proposed by Collins and Quillian in a way that none of the semantic relationships in a class was present between the word pairs (Collins & Loftus, 1975). The task was developed similar to the Children's Memory Scale (CMS) proposed by Cohen based on four stages of learning and each learning stage included three trials. Following Lukacs et al. (Lukács et al., 2017), in retention stage, the children must have recognized whether they had already heard a specific word pair after 24 hours.

Evaluating the Task

Eight speech and language pathologists (SLP) with master’s degree or higher participated in calculating content validity index (CVI) and content validity ratio (CVR) of the WP task [21]. The agreement value of 0.75 was considered to be acceptable for including a word in the list of pairs. A total of 42 word pairs were finally selected, i.e. 14 word pairs for each stages of initial learning, immediate recall, delayed recall, recognition stage, and retention stage.

The face validity of the initial version of the task was examined by administering it for 10 seven-year-old normal children (five girls and five boys). The children’s behavior during the test administration showed that the test procedure was vague for them which led to the modification of the test administration (Ebadi A et al., 2014).
Similar to other studies (Lum et al., 2012), a total number of 31 students aged 7-9 years from primary schools located in three different areas of Isfahan were recruited using non-probability convenience sampling to examine the internal consistency of the WP task. The inclusion criteria included being monolingual (Persian), aged 7-9 years, not suffering from visual, auditory, neurological, neurodevelopmental disorders, emotional-mental disorders, attention deficit hyperactivity disorder (ADHD), delayed psychomotor and speech-language developments.

In order to determine the test-retest reliability, it was administered to the same participants after a one-week interval. The Cronbach’s alpha and the Pearson’s correlation coefficients were used to determine internal consistency and test-retest reliability of the task, respectively (Ebadi A et al., 2014).

Materials and Methods

Measures that used for inclusion criteria evaluation

The inclusion criteria were confirmed using the parents’ answers to the medical history questionnaire. The auditory processing domains questionnaire (APDQ) (Ahmadi, Jarollahi, Ahadi, & Hosseini, 2017) was used to confirm children do not have auditory processing disorders. The lexical knowledge was evaluated in two dimensions of perception and expression using three subtests (picture vocabulary, relational vocabulary, and oral vocabulary) of Test of Language Development-Primary, Third Edition (TOLD-P:3). The picture vocabulary subtest was used to evaluate understanding, based on which the children were asked to point at one of the four images corresponding to the presented auditory stimulus. Relational and oral vocabulary subtests were performed to evaluate the expression. In the relational and oral vocabulary subtests, the children were asked to express the similarity
between the two words and define the words, respectively. Afterward, the developed WP task was administered to all children.

The study was approved by the Ethical Committee of the University of Social Welfare and Rehabilitation Sciences by approval code of IR.USWR.REC.164.1397. All the parents signed the informed consent prior to the experiment.

Results

The participants included 31 students (14 girls (45.2%) and 17 boys (54.8%) with an average age of 95.09 months (standard deviation = 7.95). The sample included 19 children in the 7-8 age group and 12 children in the 8-9 age group. The results of content validity ratio computed as 1.00 indicating that all experts agreed on the necessity of the word pairs. On the other hand, 65 word pairs had a CVI of 1.00, indicating all experts considered the word pairs completely relevant. The final set of word pairs consisted 42 pairs including 34 pairs with a CVR and CVI of 1.00, and 8 pairs with a CVR of 0.75 and a CVI of 1.00.

The test-retest reliability was examined by calculating Pearson correlation coefficient between two occasions of testing, i.e. 0.835, which was statistically significant (P<0.001). The internal consistency of items was computed as 0.88 of Cronbach’s alpha coefficient.

Table 1 represents the mean scores of participants in different stages of the WP task and the scores of the semantic section of TOLD-P:3. In each stage of the WP task, the maximum possible score was 14, which was calculated based on the number of words accurately recalled or recognized.

Using the parametric t-test with two independent samples and the non-parametric Mann–Whitney U test, the changes in the variables presented in Table 1 were
investigated in two age groups of 7-8 and 8-9 years. The results showed that although changes increase by age, the only statistically significant increases are located in the immediate recall stage of declarative memory (P<0.05) and the semantic aspect of TOLD-P:3 (P=0.001). Using the repeated measures ANOVA, the significance of changes was evaluated for all participants in all three trials of the learning stage. The results indicated that the increase in the number of recalled words in the three trials of the learning stage is statistically significant (P<0.001).

The significance of the difference between the last trial of the learning stage and the recognition stage was evaluated using a paired sample t-test. The results indicated that there was a significant difference between the recognition stage and the last trial of the learning stage (t=14.627, P=0.000), i.e., children’s performance in the recognition stage, was significantly better than learning stage. Also, the results suggested that there was no significant difference between the performance of the subjects in the recognition and retention stages (t=0.162, P=0.837), and no significant relationship between the semantic aspect of language and learning stage (r=0.15, p=0.402), immediate recall stage (r=0.31, p=0.083), delayed recall stage (r=0.036, p=0.849), delayed recognition stage (r=-0.183, p=0.325), and retention stage (r=0.23, p=0.203) of declarative memory task.

Regression Analysis

Considering the proposed relationship between declarative memory and semantic aspect of language (See Lum et al., 2012 for a review), and following the presumptions of the regression analysis, the scores of the semantic aspect of language (dependent variable) were assumed to be predicted by different stages of declarative memory (independent variables). The results of the multivariate regression analysis indicated that the variable of the retention stage affects the
semantic aspect of language (P=0.001), and it predicted variations in the semantic aspect of language by 50.9%. In other words, one unite increasing of the standard deviation in the score of the retention stage would increase the score for the semantic aspect of language about 0.550 unit.

Discussion and Conclusions

The main objective of the current study was to design a valid and reliable task for evaluating declarative memory among Persian children and to explore the relationship between declarative memory and semantic aspect based on the declarative/procedural (DP) model. The current study showed that the developed WP task has acceptable levels of test-retest reliability (Pearson coefficient = 0.825) and internal consistency (Cronbach’s alpha = 0.880) (Cohen, 1997; Fridlund & Delis, 1994) and can be used as a valid and reliable task for assessing declarative memory in children suffering from speech-and/or language disorders.

According to the declarative/procedural (DP) model, declarative memory is believed to be relatively intact in developmental language disorder (DLD), and it plays a compensatory role for the syntactic deficit and other deficits in DLD (Lukács et al., 2017; Lum et al., 2012). Therefore, the WP task is of great importance in assessing declarative memory due to its compensatory role in DLD.

In line with previous studies, as the age of the children increases, their performance in different stages of the task improves (Lum, Kidd, Davis, & Conti-Ramsden, 2010). In addition, the number of words recalled in three learning trials gradually and significantly increased, which is in line with the results reported by Lum et al. (2015). This increase indicates that by multiple exposing of the children to the same
words, they can better associate words in a pair (Lum, Ullman, & Conti-Ramsden, 2015).

Consolidation refers to the internalization of information after the initial learning. Considering the consolidation effects, it was expected that subjects perform significantly better in the retention stage compared to the recognition stage. However, the results did not show a significant difference between recognition and retention, while there was a significant difference between the last trial of the learning stage and the recognition stage. These results are in line with the results reported by Lukacs et al., and it seems that normal children show their best performance at the recognition stage, so there is no room for improvement following the consolidation (Lukács et al., 2017).

According to the declarative/procedural (DP) model and similar studies (Lum et al., 2012), it was expected that a correlation could be observed between the semantic aspect of language and the person’s performance in WP task, while the performance in declarative memory task can predict the score for semantic aspect. Unlike previous studies, the current study showed that there was no correlation between the semantic aspect and the WP task. One of the probable reasons can be attributed to the smaller sample size, and the other can be related to the task used for evaluating the semantic aspect of language. Lum et al. evaluated lexical abilities of children using Expressive One-Word Picture Vocabulary Test (EOWPVT) and the Receptive One-Word Picture Vocabulary Test (ROWPVT) that address the reception and expression of words in different classes of objects, verbs, adjectives (Lum et al., 2010; Michalec & Henninger, 2011). The current study, however, used three subtests of picture vocabulary, relational vocabulary, and oral vocabulary. Just picture vocabulary of TOLD-P:3 that explores the comprehension of lexical items similar to that of Lum et al includes nouns and adjectives.
The regression analysis showed that the subjects' performance in the retention stage of declarative memory was the only component capable of predicting the score of semantic aspect. According to the similarity observed between children’s performance in recognition and retention stages, we expected that the recognition stage was also capable of predicting the score of the semantic aspect. However, it was not approved. The difference in the nature of tasks in these two stages can be a potential cause for this result. It seems that in the retention stage, the presented words become a part of the children's lexical reserve due to a 24-hour interval, and therefore, the person's performance in this stage and his/her ability to consolidate the information in the mental lexicon can predict semantic aspect.

In sum, the results demonstrated a satisfactory validity and reliability of the developed WP task. With an easy scoring system and requiring an administration timeframe of only 15 minutes, this task can be used for evaluating declarative memory in cognitive, speech, and linguistic disorders, particularly for developmental language disorder. Moreover, the results confirmed the predictions of the declarative/procedural (DP) model concerning the relationship between the semantic aspect of language and declarative memory in the retention stage.

The current study had some limitations. The age range of our study limited the findings to the children between 7-9 years of age.

Acknowledgements:

We thank all children and parents who participated in this study.

Conflict of Interests

The authors declare that there is no conflict of interests.
<table>
<thead>
<tr>
<th>Age group</th>
<th>M</th>
<th>SD</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning score (trial 1)</td>
<td>7-8</td>
<td>1.73</td>
<td>0-5</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>2</td>
<td>0-8</td>
</tr>
<tr>
<td>Learning score (trial 2)</td>
<td>7-8</td>
<td>3.84</td>
<td>0-9</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>5.08</td>
<td>1-10</td>
</tr>
<tr>
<td>Learning score (trial 3)</td>
<td>7-8</td>
<td>6.36</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>7.16</td>
<td>2-13</td>
</tr>
<tr>
<td>Learning score</td>
<td>7-8</td>
<td>11.21</td>
<td>4-26</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>14.25</td>
<td>1-20</td>
</tr>
<tr>
<td>Immediate recall</td>
<td>7-8</td>
<td>6.87</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>6.58</td>
<td>4-10</td>
</tr>
<tr>
<td>Delayed recall</td>
<td>7-8</td>
<td>4.52</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>5.50</td>
<td>2-10</td>
</tr>
<tr>
<td>Delayed Recognition</td>
<td>7-8</td>
<td>13.16</td>
<td>4-14</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>13.50</td>
<td>11-14</td>
</tr>
<tr>
<td>retention</td>
<td>7-8</td>
<td>13.05</td>
<td>4-14</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>13.50</td>
<td>12-14</td>
</tr>
<tr>
<td>semantic</td>
<td>7-8</td>
<td>64.2</td>
<td>75-43</td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>72.58</td>
<td>67-79</td>
</tr>
</tbody>
</table>
References

