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Highlights 
1. RHOA, FGF2, FYN, and CD44 are the significantly up-regulated hub-bottlenecks in 

down syndrome patients.  

2. Biological process related to these top four genes could encountered disruptions. 

3. The introduced central genes could be considered as potential biomarkers after 

conducting validation studies.   

4. Other chromosomes rather than chromosome 21 contribute to down syndrome risk.  

Plain Language Summary  

 
Down syndrome as a genetic disorder is in a great attention for molecular studies. One way is to 

study down syndrome via bioinformatics. In this study, gene expression profile from microarray 

study was selected for more investigations. The study of down syndrome patients shows that 

there are certain genes with differential expression and network centrality properties. These 

genes are introduced as RHOA, FGF2, FYN, and CD44 that their level of expression is high in 

the patients.  This study suggests that other than chromosomes 21, there are additional 

contributing chromosomes in down syndrome risk. In addition, these genes could be used for 

clinical studies after more analysis.    

 

  



 

 

Abstract 

  Down syndrome (DS) is a common genetic disorder that molecular investigation could provide 

a better understanding of this complicated condition. In this regard, the present bioinformatic 

study is aimed to reveal important genes and their associated biological processes in DS via 

transcriptome microarray study (GSE5390) in Gene Expression Omnibus database (GEO).  The 

differentially expressed genes (DEGs) between adult DS patients and healthy individuals from 

brain tissue were acquired and screened via GEO2R online software. Then, Cytoscape and its 

plug-ins constructed and analyzed a protein-protein interaction (PPI) network of significant 

DEGs.  The findings indicate that there are four key possible biomarkers in DS in terms of 

aberrant expression and centrality in protein-protein interaction (PPI) network. Additionally, the 

high expression of these candidate biomarkers, including RHOA, FGF2, FYN, and CD44 could 

stimulate disruption in their related biological processes. Overall, although far from complete, 

our mapping provided a new insight to interactome level in adult DS patients by introducing four 

potential targets and their enriched biological features. These findings indicate that the critical 

aspects of DS could be affected by the products of various chromosomes (Chrs) besides Chr 21.  

Keywords: Down syndrome, Protein Interaction Maps, Transcriptome, Differentially Expressed 

Genes, Biological Process  

  



 

 

 

Introduction  

Trisomy 21 is the most frequent chromosomal aberration in up to 1 in 700 population 

of newborns (Busch et al., 2005).  Vast abnormalities in patients with this syndrome 

exist for instance,  metabolism dysfunction, dysmorphic characteristics,  and mental 

retardation as the most highlighted one (Bajo, Fruehauf, Kim, Fountoulakis, & Lubec, 

2002; Starbuck, Cole III, Reeves, & Richtsmeier, 2017).  There are different detection 

approaches for prenatal stage of this developmental disorder each with its pros and 

cons (Busch et al., 2005). Most of the molecular studies are also in this regard either 

via amniotic fluid or serum sample of pregnancies with trisomy 21 for diagnosis 

purposes (Busch et al., 2005; Tsangaris et al., 2006). However, to understand what 

triggers the broad range of abnormal phenotype in DS (Teeling et al.), it is required to 

explore the molecular profile of patients with this defect. The mechanisms behind the 

phenotype of DS remained to be studied via different molecular approaches (Lockstone 

et al., 2007). Over the past decade, there are some investigations that shed a light on 

complex mechanism of DS through large-scale analysis including transcriptomic, and 

proteomic studies (Bajo et al., 2002; Di Domenico et al., 2014; Lockstone et al., 2007). 

At these scales, information related to the expression profile of genes and proteins 

could  be retrieved for any condition such as abnormal ones like a disease state 

(Rezaei–Tavirani, Tavirani, & Rostami, 2018). In addition,  bioinformatics can reveal 

different aspects of identified molecules by high throughput data analysis (Rezaei–

Tavirani, Bashash, et al., 2018). The function of biomolecules are handled and 

mediated by interacting with other molecules (Zamanian Azodi et al., 2018). One of the 

identified novel processes related to DS mechanism was the oxidative stress process, 

which was repeatedly pinpointed by many proteomic studies (Butterfield, Di 

Domenico, Tramutola, Head, & Perluigi, 2017; Di Domenico et al., 2014; Perluigi et 

al., 2011). Furthermore, this process associates with the transition of DS to DS with 

Alzheimer disease (Butterfield et al., 2017). Other molecular studies such a 

bioinformatics approach expressed that down syndrome critical region (DSCR) of 

chromosome 21 may have a great regulatory impact in this disorder (Chen et al., 2018). 

Another network analysis that was also conducted on the current and in the 



 

 

combination of other microarray database indicated that there some DEGs including 

BCL2, HSP90 beta, UBX2, and TMEM50B that might be important in DS (Zhao, 

Zhang, Ren, Zong, & Kong, 2016). What is more, there are important points such as 

centrality properties in an interacting profile (as a scale free network) that influence the 

whole system. Centrality analysis is through identification of two common parameters 

including degree and betweenness centrality. Any changes in central elements of a 

scale free network could result in an abnormal phenotype such as a disease state 

(Zamanian-Azodi, Rezaei-Tavirani, Rostami-Nejad, & Tajik-Rostami, 2018). 

Therefore, identification of these essentials could provide further information and 

validation of biomarkers linked to the disorder condition. In this respect, protein-

protein interaction network analysis was applied in this study to possibly reveal this 

aspect of molecular features in a disorder such as DS.  

 

Materials and Methods 

In this work, we are investigating differential expressed genes (DEGs) with centrality features in 

a protein-protein interaction network pattern. For this aim, at first we queried the GEO Database 

at the National Centre for Biotechnology Information (NCBI) 

(https://www.ncbi.nlm.nih.gov/geo/) for a study that provides a gene expression profile of DS 

patients in comparison with healthy controls. A research carried out by Bahns, et.al. entitled” 

Expression profiling of human adult postmortem brain tissue from adult Down syndrome and 

healthy control subjects “, Series GSE5390, platform: GPL96 (Lockstone et al., 2007) was 

selected for our bioinformatic evaluation. The chip used in this study was Affymetrix HG-

U133A GeneChips.  The conductors of this study used RNA extraction from postmortem brain 

samples of eight healthy subjects versus seven down Syndrome types (dorsolateral prefrontal 

cortex) from female and male via microarray. The subjects mean ages for disease and control 

groups were  58.6 ± 9.4 years and 47.8 ± 10.8 years, respectively. At first, GEO2R online 

analyzer (https://www.ncbi.nlm.nih.gov/geo/geo2r/) in GEO Database analyzed these two 

groups. However, prior to that, cross comparison via box plot analysis was carried out to 

determine the quality of groups. If the samples are median-centered then the procedure could be 

continued by identification of top 250 ranked DEGs in DS. The fold change threshold was 

obtained by evaluating the cumulative frequency of mRNA-expressed profile between groups of 

https://www.ncbi.nlm.nih.gov/geo/geo2r/


 

 

the study among 250 genes. A cut off of 2 for fold change (FC) was designated to detect the most 

DEGs among 250 tops. The correction test for the raw p-Value was set to Benjamini & 

Hochberg (False discovery rate) as the default option. The significance threshold that is 

acceptable for the DEGs is adj.p.value ≤ 0.05. The uncharacterized DEGs among the analyzed 

significant DEGs were excluded and the remained ones were applied for construction of a PPI 

network via Cytoscape v. 3.6.1 (https://cytoscape.org/) and its plug-in Search Tool Retrieval of 

Interacting Genes (STRING DB) (https://string-db.org/) (Shannon et al., 2003; Szklarczyk et al., 

2016). Network Analyzer was used to determine the most critical nodes in the network in terms 

of interaction pattern (Assenov, Ramírez, Schelhorn, Lengauer, & Albrecht, 2007). Two 

parameters were fundamentals for this purpose including degree (K) and betweenness centrality 

(BC).  Nodes with highest rank of these two features are called hub-bottlenecks (Safari-

Alighiarloo, Rezaei-Tavirani, Taghizadeh, Tabatabaei, & Namaki, 2016). Following 

determination of hub-bottlenecks, CluePedia (http://www.ici.upmc.fr/cluepedia/) explores 

gene/protein/miRNA associations linked to the ClueGO networks with a designated scores. In 

here, it examined the expression profile of these central nodes via extracting from the expression 

input file in CluePedia panel. Depends on how many spots are available in the related GEO input 

file from for the corresponding gene, all will be extracted and merge as node labels (Bindea, 

Galon, & Mlecnik, 2013).  Consequently, the most significant differentially expressed ones were 

then searched against ClueGO for enrichment and action type analysis (Bindea et al., 2013; 

Bindea et al., 2009). ClueGO is an application in Cytoscape that could analysis the functional 

properties of the queried genes.  The enrichment analysis includes biological process (BP), 

cellular component (CC) and molecular function (MF) evaluations. In which here the BP is 

examined for the significant DEGs.   The action type analysis between these genes were 

conducted via STRING Action File, V10.5., 2017., for five interaction enrichments including 

expression, activation, inhibition, post-translational modifications, and catalysis. To determine 

these interactions, kappa scoring (0-1) was used for scaling the edge strength, which is displayed 

by edge thickness. Moreover, this plug-in can be used for gene ontology (biological process, 

molecular function, and cellular component) analysis. In a way that, a network view of groups of 

terms associated with individual gene ontology could be provided. Our experiment covers one of 

the domains introducing biological process relationships. The term grouping for biological 

process strength was calculated by kappa statistic (this score is between 0-1) and the assigned 

http://www.ici.upmc.fr/cluepedia/


 

 

cutoff was 0.5. This statistic measurement is used for determination of grouping terms. The 

higher the k score, the lower the chance of grouping biological terms.  Moreover, grouping terms 

are based on the default setting as follow: number of genes in terms: 3 and percentage of genes 

contributing in terms: 4. Likewise, default options was applied for the levels of ontology as 

follow: Min level of ontology: 3, max level of ontology: 8. The correction method in this regard 

is Bonferroni step down (p≤ 0.05). The enrichment/depletion test: two-sided 

(enrichment/depletion) based on hypergeometric 

 

Results 

Transcriptome analysis of DS versus healthy controls was from GEO Database via GEO2R. This 

comparison at first was analyzed by boxplot to evaluate the quality of samples in gene 

expression (see figure 1).  

 



 

 

Figure1.  Graphical view of value distribution in 8 healthy and 7 DS cases via Box plot analysis. Blue 

color indicates control samples while pink color indicates DS samples. Lateral axis: names of samples, 

longitudinal axis: the genes. 

 

 

 

The top 250 DEGs were determined and then those with gene names and fold change ≥ 2 were 

considered for network establishment by STRING.  The range of significance level was from 

0.0003 to 0.0026. A number of 65 up-regulated and 3 down regulated genes (FC>2) were 

obtained. A network of up-regulated and down-regulated genes with the addition of 100 

surrounding interacting ones was constructed.  The network included a main connected 

component (contain 156 nodes and 3420 edges) and 12 ones that were not connected to the main 

network (the data is not shown).  For hub-bottleneck identification, the 20% of top genes with 

highest amount of degree and betweenness centrality were recognized. A number of 19 common 

genes from 34 top ones based on K and BC, were assigned as hub-bottlenecks (see Table S1). To 

visualize and explore the expression profile of the hub-bottlenecks DS network, CluePedia was 

applied (see figure 2). As depicted in the figure 2, except MBOAT4 (the low expressed gene) the 

other genes are differentially expressed in DS patients; however, only RHOA, FGF2, FYN, and 

CD44 hub-bottlenecks are significant in differential expression. (The criteria for assigning genes 

with more than one spots as significant differential expression ones was to have at least one spot 

with significant differential expression). 

 

Statistical and centrality properties of these four significant DEGs are tabulated in the table 1. In 

addition, the same plug-in, CluePedia was used to gain further knowledge about the four 

significant DEGs in terms of interaction type (see figure 3). Activation, inhibition, Catalysis, 

expression, and Binding actions were determined. 

Biological process analysis related to the RHOA, FGF2, FYN, and CD44 DEGs was done by 

CluePedia and CluGO. As it is shown in the figure 4, 15 terms are identified which are clustered 

in the 4 classes. 

 



 

 

 

 

  

Figure 2. Normalized expression showing as node labels for 18 found genes using DS profile. 

 

 

In the figure 2, the data is extracted from input file, GSE5390_series_matrix merging in CluePedia 

application. The rows are the number of genes’ spots in the sample that are considered as differentially 

expressed (DE) probes.  The color scheme from red (Maximum positive Expression) to green (Maximum 

negative expression) shows the pattern of positive to negative expression changes. White and grey refer to 

zero expression and missing values, respectively.    

 



 

 

 

 

Several spots were available for FGF2, FRN, CD44 whereas one spot was extracted for RHOA.  

 

Table1. The list of significant hub-bottlenecks that are differentially expressed in DS patients. Chr refers 

to chromosomal location of the genes. 

 

   

 

Row Gene Name Protein Name Adj.P.Value LogFC Chr  K BC 

1 RHOA ras homolog family member A 0.002 0.8 3 73 0.01 

2 FGF2 fibroblast growth factor 2 0.030 0.9 4 76 0.02 

3 FYN FYN proto-oncogene, Src family tyrosine kinase 0.001 1.1 6 81 0.01 

4 CD44 CD44 molecule (Indian blood group) 0.010 1.9 11 80 0.01 



 

 

Figure 3. Action type analysis of the four significant central DEGs via CluePedia exploration is shown. 

Different colors indicate different action types; Green: Activation, Red: Inhibition, Purple: Catalysis, and 

Blue: Binding.  

 

 

 

Figure 4. Biological process examination of the four significant expressed hub-bottlenecks in DS via 

ClueGO+ CluePedia.  Four groups of biological processes are present here namely Negative regulation of 

blood vessel endothelial cell migration, Epiboly, hyaluronan catabolic  process, and regulation of 

adherents junction organization, in which the most highlighted one is the first mentioned term in blue 

color. The four genes are assigned to different terms. The node colors indicate what terms are linked to 

that specific gene. For example, FYN only is related to one term, which is shown with that specific term 



 

 

color dark green.  Gene per term: 2, Gene percentage per term: 3%. Kappa Score: 0.5. The corrected 

method for p-value was Bonferroni step down.   

Discussion 

Down Syndrome as a genetic disorder is not well-studied in terms of molecular profiling (Liu et 

al., 2017). Identification of molecular events in DS could increase understanding of its 

mechanisms and consequently developing management approaches. One of which is examining 

differentially expressed genes in DS via array profiling. Furthermore, protein network mapping 

of these abnormal expressed genes could offer further understanding of the molecular behavior 

in an interacting system. For this aim, DS gene expression profile (GSE5390) was investigated 

via different online and offline analyzing tools. At first, the comparison of two groups of healthy 

and DS was conducted by box-plot through GEO2R online analyzer in figure1. The comparison 

showed that the values are median-centered and consequently, the groups are comparable in 

terms of expression; hence, the data is suitable for further investigations. Analysis of GEO2R 

results showed that there are 63 up-regulated versus 3 down-regulated DEGs which differentiate 

DS group from healthy people.  This fact is in correlation with previous reports that over-

expression is dominant in chromosome 21 of Down syndrome brain (Liu et al., 2017; Lockstone 

et al., 2007; Mao, Zielke, Zielke, & Pevsner, 2003). Since PPI network analysis can be used to 

screen the top DEGs to find more effective and influence genes relative to onset and 

development of DS, the central elements (hub-bottlenecks) of network were identified and 

tabulated in Table s1. A total of 19 genes were assigned as hub-bottlenecks for the DS network 

in which, none of them were among top 250 DEGs except FYN. To evaluate rank of these 

central genes in DS expression profile, CluePedia was applied to combine the expression profile 

data with them as shown in figure 2. It can be inferred that all genes have expression values 

across the dataset GSE5390, except for MBOAT4. Since the DEGs which are expressed with at 

least one significant DE probe are considered as significantly expressed in DS, the genes of INS, 

EGF, ERBB2, AKT1, ALB, GAPDH, IL6, JUN, PIK3CA, PIK3CB, PRDM10, SRC, TP53, and 

CDC42 are not significantly expressed in DS. In another words, only four genes showed 

significant expression modifications among these 19 queried central genes. However, except 

RHOA which is with one spot, the other three DE hub-bottlenecks (FGF2, FYN, and CD44) in 

some spots show inhomogeneous expression patterns. These three genes significantly are 



 

 

positively expressed in patients but not in some individual samples. Overall, these genes are 

considered statistically significant in expression since they have at least one spot with SDE.   

The four significant central DEGs include RHOA, FGF2, FYN, and CD44 with 1, 2, 4, and 9 

rows, respectively. All of which are up-regulated that may propose that no down-regulated gene 

may have noteworthy role in DS phenotype and provide more evidence for probable role of up-

regulation in DS.  Moreover, as indicated in table 1,  none of these genes is located on 

chromosome 21; they are in fact on chromosome 3, 4, 6, and 11. This shows the effect of gene 

up-regulation event from other chromosomes in DS. Several experimental models in last decades 

have shown that small GTPases of the Rho family are master regulators of the actin cytoskeleton 

in every cell type (Hall, 2005). This is important to know that these molecules have critical 

linkage in several features of the neuronal differentiation (Govek, Newey, & Van Aelst, 2005) 

and key factors in many neurological syndromes and mental retardation (Newey, Velamoor, 

Govek, & Van Aelst, 2005; van Galen & Ramakers, 2005). Berto et al showed that the protein 

TTC3, encoded by one of the main down syndrome (Teeling et al.) critical region candidate 

genes, physically interacts with Citron kinase (CIT-K) and Citron N (CIT-N). These two are 

effectors of the RhoA small GTPase that have previously reported to be involved in neuronal 

proliferation and differentiation (Berto et al., 2007). As known enormous number of phenotypes, 

including learning difficulties, cardiac defects, unique facial features and leukemia accompanies 

with down syndrome (Lana-Elola, Watson-Scales, Fisher, & Tybulewicz, 2011).  FGF2 

cooperates stromal cell support of normal hematopoiesis by modulating osteoblast functions in 

bone marrow (Sugimoto et al., 2016).  In which could have an association in leukemia of DS. 

Fyn is a tyrosine-specific phospho-transferase that is a member of the Src family of non-receptor 

tyrosine protein kinases (Resh, 1998). MM Ahmed et al considered the role of FYN in the 

nuclear fraction of hippocampus in DS models of rat (Ahmed et al., 2015). The CD44 is a cell 

surface marker, which is involved in cell–cell interactions, adhesion and migration. and encoded 

by the CD44 gene chromosome 11 (Spring et al., 1988). In addition, it is especially associates 

with active Src family protein tyrosine kinases Fyn in plasma membrane domains of human 

lymphocytes (Ilangumaran, Briol, & Hoessli, 1998). Moreover, as it is shown in table 1, FYN 

and RHOA are the most significantly expressed ones in DS. Additionally, CD44 showed the 

highest fold change among the DEGs. The analysis continued by examining the action type 

between these prominent genes (see figure 3). As it is apparent, all the queried action types are 



 

 

present between FYN and RHOA. This phenomenon implies that these genes are in condense 

interactions. These two genes as indicated earlier are the most significant altered genes in DS as 

well. The other two genes, CD44 and FGF2 contributes in just two types of actions in this 

analysis, which is binding, and activation. To get a better view of the role of the important four 

genes, CluePedia handled the enrichment analysis. As it is presented in the figure 4, these genes 

contribute in four classes of 15 biological terms. The expression changes of our genes could have 

an impact on these biological processes and consequently, their dysregulation in DS.  Negative 

regulation of blood vessel endothelial cell migration as the most highlighted group in our query 

shows that two genes of RHOA and FGF2 are involved in regulation of this class of 5 biological 

terms.  CD44 and FYN are involved in two and one groups of biological processes, respectively. 

In addition, RHOA is almost participating in all groups except in hyaluronan catabolic process.  

Therefore, RHOA may have distinctive roles in DS due to its vast molecular characteristics.  

Conclusion  

It can be concluded that RHOA, FGF2, FYN, and CD44 (especially RHOA) and their related 

biological features may play indispensable associations in Down syndrome risk. Moreover, this 

study supports and suggests the fact that up-regulation may have more potential role in DS 

phenotype with a possible remarkable influence from other chromosome significantly differential 

expressed genes. However, more studies worth pursuing for verification of this finding.  
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