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Introduction: In recent years, brain functional connectivity studies are extended using the 
advanced statistical methods. Functional connectivity is identified by synchronous activation in 
a spatially distinct region of the brain in resting-state functional Magnetic Resonance Imaging 
(MRI) data. For this purpose there are several methods such as seed-based correlation analysis 
based on temporal correlation between different Regions of Interests (ROIs) or between brain’s 
voxels of prior seed.

Methods: In the current study, test-retest Resting State functional MRI (rs-fMRI) data of 
21 healthy subjects were analyzed to predict second replication connectivity map using first 
replication data. A potential estimator is “raw estimator” that uses the first replication data from 
each subject to predict the second replication connectivity map of the same subject. The second 
estimator, “mean estimator” uses the average of all sample subjects' connectivity to estimate 
the correlation map. Shrinkage estimator is made by shrinking raw estimator towards the 
average connectivity map of all subjects' first replicate. Prediction performance of the second 
replication correlation map is evaluated by Mean Squared Error (MSE) criteria.

Results: By the employment of seed-based correlation analysis and choosing precentral gyrus 
as the ROI over 21 subjects in the study, on average MSE for raw, mean and shrinkage estimator 
were 0.2169, 0.1118, and 0.1103, respectively. Also, percent reduction of MSE for shrinkage 
and mean estimator in comparison with raw estimator is 49.14 and 48.45, respectively.

Conclusion: Shrinkage approach has the positive effect on the prediction of functional 
connectivity. When data has a large between session variability, prediction of connectivity map 
can be improved by shrinking towards population mean. 
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1. Introduction

unctional Magnetic Resonance Imaging 
(fMRI) is one of the valuable instruments 
to discover the function of the human brain. 
The fMRI is a non-invasive method that uses 
Blood Oxygen Level Dependent (BOLD) 

contrast mechanism (Daliri & Behroozi, 2012). In re-
cent years, lots of researchers studied the patterns of 
brain functional connectivity (Behroozi, Daliri, & Boy-
aci, 2011; Ghaderi et al., 2017; Sadeghi et al., 2017). 
Functional connectivity focuses on how brain voxels 
and regions interact and function with each other.Some 
studiesare conducted on Resting-State (rs)-fMRI data to 
understand patterns ofbrainconnectivity and their role 
in brain diseases and disturbances (Zhang, Guindani, & 
Vannucci, 2015).In the resting-state imaging, without the 
stimulus, the subject is requested to lie down in the scan-
ner device and not to move until the end of the imaging 
time (Daliri & Behroozi, 2013). Low-frequency fluctua-
tions (<0.1 Hz) are observed in resting-state networks 
(Biswal et al., 1995).

Functional connectivity implies temporal correlation of 
the BOLD signals between voxels or Regions of Inter-
est (ROIs) (Zhang et al., 2015). There are various ana-
lytical methods such as clustering (Cordes et al., 2002), 
partial correlation (Cribben et al., 2012; Varoquaux et al., 
2010), independent component analysis and principal 
component analysis (Andersen, Gash, & Avison, 1999; 
Calhoun et al., 2001; McKeown et al., 1998). Some 

methods explore the dynamic functional connectivity, 
since healthy brain function may show rich dynamics 
over the course of time (Borumandnia et al., 2017). 

Seed-based correlation analysis is one of the most wide-
ly used methods in functional connectivity analysis that 
is according to the temporal correlation between ROIs 
or between voxels in an ROI (Biswal et al., 1995; Fox 
et al., 2005). In new studies, the estimation of resting-
state functional connectivity in aseed-based correlation 
analysis is improved by shrinkage approach (Shou et 
al., 2014). This estimator is used in scan-rescan rs-fMRI 
data to predict the functional connectivity by shrinking 
the subject-specific estimator towards the average con-
nectivity maps of all subjects (Shou et al., 2014).

Due to large variability in subject-specific data, the 
results of short-term data usually tend to be highly un-
stable. One way to achieve a reliable estimate for each 
subject is to increase the time of brain imaging from a 
standard time 5-10 minutes to 30-60 minutes (Cohen et 
al., 2008). This gives the analyst more information, but 
this approach has limitations. A large number of rs-fMRI 
scans with a 5-10 minute imaging time were collected in 
the past and contained valuable information that is thus 
excluded. The impossibility of long-term scans of chil-
dren, elderly, and sick people, and high cost of the brain 
imaging are leading obstacles (Mejia et al., 2015). Mejia 
et al. (2015). evaluated the effect of shrinkage estimators 
in simulated data with different lengths of time. In terms 
of reliability, shrinkage estimation of short-term data 

Highlights

● Resting-state functional MRI scans with large session-to-session variability.

● Shrinkage estimators improve the prediction of each subject-specific functional connectivity maps.

● Using the shrinkage method has the advantage of analyzing big data with numerous variables and low observations.

● Shrinkage estimator can make it possible to cluster the brain more reliably because it provides a more reliable esti-
mation of the functional connectivity map.

Plain Language Summary

High variability of the acquired data and short-term scans in Functional magnetic resonance imaging studies are 
two significant challenges of data analysis, causing unreliable results. Shrinkage approach, in functional connectivity 
studies, presents reliable estimators considering the mentioned challenges. Comparing the results of classic estimators 
to the result of shrinkage estimators, it is found that shrinkage estimators provide more reliable and precise results. 
Moreover, because of creating a reliable functional connectivity map, any further analysis would be better in terms of 
reliability.
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with 200 time and subject-specific estimation of a long-
term data with 1000 time points have the same results

In the current study, shrinkage approach was applied to 
21 healthy subjects (7-12 years old; 11 females and 10 
males) with two scanning sessions to estimate correla-
tion maps of the second replication using the first repli-
cation correlation coefficient. Each scanning session had 
74-time points and the current study aimed at investi-
gating the advantage of shrinkage approach to improve 
the prediction of functional connectivity in very short 
rs-fMRI scans.

2. Methods

Let Yij(v, t) denote fMRI time series for each voxel of 
ROI at time t=1, …, T, for subject i=1, …, I, scanning 
session j=1, …, J. In the current study it was as follows: 
I=21, J=2, T=74. Seed time course is defined as:

(1)

1(t) (v, t)S
ij ij

v S
Y Y

S ∈

= ∑

, where S and |S| are the collection of voxels and num-
ber of voxels in ROI, respectively. Seed-based correla-
tion map is defined as the correlation between Yij(v, t) 
and YS

ij(t):

(2)
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, where Yij (v,.)  is the average of Yij (v, t), and YS
ij (.)  

is the average of YS
ij (t) over time (Shou et al., 2014). 

Equation (2) shows that the connectivity map is not de-
pendent on time and can be calculated for each subject, 
each replication, and all voxels in ROI.

The goal was to predict second replication connectiv-
ity map, Wi2 (v), of each subject using the first scan-
ning session information. The connectivity map from 
the first replication of each subject can be considered 
as the estimation of second replication for the same 
subject, W Ri2 (v)=Wi1 (v) , named “raw estimator”. 
The second estimator is “mean estimator” that uses the 
mean of the first replication connectivity map of all 
subjects in the study:

(3)

2 1
1

1ˆ ( ) (v), 1,..., 21.
I

M
i i

i
W v W i

I =

= =∑
Therefore, the results are the same for all subjects. The 

third estimator is “shrinkage estimator” that shrinks raw 
estimator towards the average of the first replication con-
nectivity map of all subjects (Shou et al., 2014).

For shrinking, Fisher Z transformation was employed 
as Equation (4) to normalize the correlation values, Wij 
(V) (Shou et al., 2014).

(4)
1 ( )1ˆ log

2 1 ( )
ij

ij
ij

W v
V

W v
+

=
−

Then shrinkage estimator was performed according 
to Equation (5) on transformed coefficient (Shou et al., 
2014).

(5)
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and λ (v) are shrinkage parameters that can take a value 
in [0, 1] (James & Stein, 1961; Shou et al., 2014).

Finally, to achieve the original scale of correlation, in-
verse Fisher Z transformation was applied as Equation 
(7) to the shrinkage estimator (Shou et al., 2014).

(7)
ˆ ˆ( ) tanh(V ( ))SH SH

ij ijW v v=

If λ (v)=1, then raw estimator VR
i2 (V) is completely un-

reliable and shrinkage estimator is reduced to the mean 
estimator. If λ (v)=0, the raw estimator is completely re-
liable and shrinkage estimator is equal to raw estimator, 
and no shrinkage occurs towards the average correlation 
map. Data are not usually reliable: hence, shrinking is 
a good option to improve prediction. Shou et al. (2013) 
reported λ (v)=λ=0.1 based on their data for shrinkage 
parameters of all voxels since this value is close to the 
average reliability of voxels. The optimized value of λ 
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(v) can be calculated based on the replication data. The λ 
(v) is considered as reliability or Intra-class Correlation 
Coefficient (ICC) for connectivity map of each voxel 
(Shou et al., 2014).

To estimate λ (v), classical measurement error model 
for replication study is defined as:

(8)

( ) ( ) U ( )ij i ijV v X v v= +

, where Xi (v) is true unobserved correlation coefficient 
for subject i, and Uij (v) is the measurement error for sub-
ject i, replication j (Carroll et al., 2006).

It was assumed Xi (.) and Uij (.) were uncorrelated with 
E (Xi (v))=µx (v) and E (Uij (v))=0, therefore, the Best 
Linear Unbiased Estimator (BLUE) of Xi (v) was de-
fined as Equation (9) (Shou et al., 2014):

(9)
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Variance of Xi (v) and Uij (v) can be estimated based 
on the data as:

(11)
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, where D (v)  and Vi (v)  are the average of Di (v) 
and Vij (v), respectively. Estimating λ (v) and putting 
in Equation (4), shrinkage estimator is resulted (Mejia 
et al., 2015).

The performance of the three estimators is evaluated 
using Mean Square Error (MSE) criterion (Lehmann & 
Casella, 2006). The small value of MSE shows that the 
estimated value is close to true value. Therefore, the es-

timator with the lowest MSE among the others is the 
best one.

(12)
2

2 2
ˆ ˆ(W (v) W (v))i iMSE E= −

Wi2 (v)  is estimated as the connectivity map by each 
of the three methods, and Wi2 (v) is the true value of ob-
tained correlation in the second replication (Haman & 
Valenta, 2013).

The brain images used in the current study were re-
lated to a global competition called "ADHD-200 
Preprocessed"1 in 2011, where its pre-processed source 
is free available. A variety of ways, including Athena 
pipeline2 are used to process these images. This method 
is the combination of processes performed by imaging 
software of FSL and AFNI (Bellec et al., 2017). Among 
this dataset, 21 healthy subjects between 7 to 12 years old 
and with 2 scanning sessions were randomly selected.

For pre-processing, structural images of skull bone 
tissue and background are removed from images, and 
White Matter (WM), Gray Matter (GM), and Cerebro-
spinal Fluid (CSF) regions are segmented. The binary 
mask is made up of white and gray matter regions. 
Skull-off images are mapped using a linear transforma-
tion to the Montreal Neurological Institute space (MNI). 
The resolution is changed to 1×1×1 mm, and the made 
masks are applied and the brightness of the images is 
normalized. Gaussian filter with 6 mm FWHM was used 
to smooth the images (Bellec et al., 2017).

Functional preprocessing steps were performed (e.g. 
removing the first four volumes, slice timing correc-
tion, motion correction, removing nuisance variance), 
data were also transformed to MNI space at 4×4×4 
mm³ resolution, temporally filtered using 0.009-0.08 
pass-band filter, and spatially smoothed (6-mm kernel) 
(Bellec et al., 2017).

The current study employed seed-based correlation 
analysis method to evaluate the estimation of functional 
connectivity of the second replication connectivity map. 
In this method, the precentral gyrus was selected as ROI. 
For the first time, Biswal et al. (1995) examined the anal-
ysis of brain function in this ROI. The mask of the pre-
central regions were prepared using the WFU PickAtlas 
toolbox in MATLAB R2014a software (Maldjian, Lau-

1. http://www.nitrc.org/frs/?group_id=383

2. http://www.nitrc.org/plugins/mwiki/index.php/neu-
robureau: AthenaPipeline
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rienti, & Burdette, 2004; Maldjian et al., 2003). All brain 
images were mapped to type 2 Eve Atlas in the SPM12 
(Oishi et al., 2009). Other calculations were performed 
in MATLAB R2014a software.

3. Results

Seed-based correlation map of the second replication was 
estimated by raw, mean, and shrinkage methods for each 
voxel of the precentral region and for the 21 subjects. Fig-

ure 1 shows the distribution of correlation coefficients for 
each subject. Red points are the outliers. Mean estimation 
of connectivity map was the same for all subjects; hence, 
the corresponding boxplot for all subjects had the same pat-
tern (Figure 1 b). As an example, the results of the subject 
18 were considered. For this subject, the raw estimator pre-
dicted that the correlation coefficients were more scattered 
(Figure 1 b) than the values obtained from the second rep-
licate of this subject (Figure 1 d).

Figure 1. Distribution of correlation coefficients  for each subject

Boxplot of raw correlation estimates (a); mean correlation estimates (b); shrinkage correlation estimates (c); and the correlation coef-
ficient of second replication data (d); Boxplots show the distribution of correlation coefficients of voxels of the precentral region for 
each subject. Red points are the outlier.
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Figure 2. Connectivity maps of the specific subject with similar connectivity map to the average of all subjects using different 
methods

First row: Raw estimator, Second row: Mean estimator, Third row: Shrinkage estimator, Fourth row: True correlation co-
efficient of the second replication, Fifth row: The mask of the precentral gyrus; The white and yellow colors indicate the 
positive correlation and the orange and red colors represent a negative correlation. Each column shows the results in a 
different axial slice.

Figure 3. Connectivity maps in sagittal, coronal, and axial views of the specific subject with similar connectivity map to the 
average of all subjects using different methods

(a) Raw estimator; (b) Mean estimator; (c) Shrinkage estimator; (d) Correlation coefficient of second replication; and (e) The 
mask of the precentral gyrus; The white and yellow colors indicate the positive correlation and the orange and red colors rep-
resent a negative correlation.
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The shrinkage estimator showed a similar pattern along 
the box and the range of correlation coefficients (Figure 1 
c). All three methods can predict negative skew inthe dis-
tribution of truecorrelation coefficients. Figure 2 displays 
the correlation map in eight different axial slices for a 
particular subject. Connectivity map of this subject was 

almost similar to the average of the connectivity map of 
all subjects. The white and yellow colors indicate the 
positive correlation and the orange and red colors rep-
resent a negative correlation. The last row is the mask 
of the precentral region and the voxels of this region are 
displayed in blue (Figure 2 e). The colors showed that 
the shrinkage estimator (Figure 2 c) had closer correla-
tion patterns to the map of the connection derived from 
the second repetition (Figure 2 d).

Figure 3 also shows the results of the specific sub-
ject in certain spatial coordinates in the three views. In 
other views, the shrinkage estimator (Figure 3 c) shows 
the nearest correlation map to the true values (Figure 3 
d). Using the Mean Squares Error (MSE) criterion, the 
performance of the three estimators to predict the sec-
ond replication connectivity map was evaluated. Table 
1 reports MSE from these three methods to each sub-

Figure 4. The boxplots of MSE for 3 different prediction 
methods; raw, mean, and shrinkage correlation estimates

Table 1. Average of MSEs over all voxels for raw, mean, and shrinkage estimators for each subject and the reduction in MSE 
for mean and shrinkage estimators in comparison with the raw estimator

ShrinkageMeanRaw
Subject

Red. %MSERed. %MSEMSE

38.360.133638.500.13420.21831

49.430.097549.150.09810.19292

35.130.085134.950.08540.13133

55.780.111455.250.11270.25204

51.030.112550.800.11370.23135

29.660.162929.230.16390.23176

33.680.095533.450.09850.14407

47.300.108147.240.10820.20528

42.430.123742.220.12410.21499

40.260.103040.060.10330.172510

62.280.157062.220.15720.416311

55.490.087355.340.08760.196112

36.030.140635.830.14110.219913

38.520.155338.020.15660.262514

38.110.064038.070.06410.103515

77.990.062977.930.06300.285816

12.600.115112.110.11570.131717

69.790.102269.480.10320.338418

59.620.075159.490.07530.186119

33.420.136633.130.13720.205220

47.160.107046.930.10740.202521

49.140.110348.450.11180.2169Average
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ject. For all subjects, the MSE of mean estimator was 
lower than the raw estimator and the MSE of shrinkage 
estimator was the lowest. The minimum and maximum 
MSE of raw estimator were 0.1035 and 0.4163, respec-
tively. By the shrinkage method, MSE decreased to a 
minimum of 0.0629 and a maximum of 0.1629. The 
average MSE of raw, mean, and shrinkage estimators 
was 0.2169, 0.1118, and 0.1103, respectively. Also, the 
decrease of MSE for mean and shrinkage estimator in 
comparison with MSE of the raw estimator was posi-
tive for all people indicating a better prediction of the 
true correlation coefficients of the second repetition us-
ing the mean and shrinkage estimators. On average, the 
reduction in MSE was 48.45% for the mean estimator 
and 49.14% for shrinkage estimator.

Figure 4 shows the MSE boxplot of all three meth-
ods. The raw estimator had larger MSE values and, 
with regard to box length, a more dispersed distribu-
tion. The MSE values for the mean and shrinkage es-
timators were almost proportional to the amount and 
dispersion and less than those of the raw estimator. The 
median MSE of raw, mean, and shrinkage estimators 
was 0.2053, 0.1083, and 0.1082, respectively. Due to 
the fact that the median line was not in the middle of 
the box, the distribution of MSE values for the three 
estimators was skew to the right. There were two outli-
ers of 0.4163 and 0.3384 in the distribution of MSE of 
the raw estimator, which were respectively related to 
the eleventh and eighteenth subjects.

4. Discussion

The current study employed a shrinkage approach to 
improve the estimation of functional connectivity in the 
seed-based correlation analysis. The test-retest rs-fMRI 
data with 74 time points in 21 healthy subjects were ap-
plied. The precentral gyrus was selected as an ROI. On 
Fisher Z transformation correlation coefficient, the aver-
age MSE for raw, mean, and shrinkage estimators was 
0.2169, 0.1118, and 0.1103, respectively. The prediction 
performance improved 49.14% and 48.45% by shrink-
age and mean estimators in comparison with that of the 
raw estimator. The prediction of the functional connec-
tivity of all subjects improved.

Shou et al. (2014) also performed this procedure in the 
20-subject rs-fMRI test-retest data with 210 time points. 
Applying shrinkage and mean estimators on fisher trans-
formed coefficients reduced MSE by 30% and 25%, re-
spectively. The shrinkage estimator improved the predic-
tion of 18 out of 20 subjects.

Mejia et al. (2015) used the shrinkage approach to es-
timate the similarity matrix. The implementation of the 
shrinkage estimator on the Fisher-transformed and origi-
nal correlation coefficients improved the reliability of the 
results 29% and 26%, respectively.

The number of people in the study does not change the 
results of the raw estimator, since this estimation does 
not depend on the information of other sample subjects, 
but the performance of shrinkage estimator is influenced 
by the number of people in the study. By simulating the 
different sample sizes, the shrinkage estimator provides 
the best result with 20 subjects and no significant im-
provement in prediction is achieved with increasing the 
subjects (Mejia et al., 2015).

A shrinkage approach is used to improve the results of 
many classical estimators. In the current study investi-
gated the advantage of analyzing big data with many 
variables and low observations. When rs-fMRI scans are 
very short with large session-to-session variability, the es-
timation of each subject-specific connectivity maps can 
be improved by shrinking towards the average of other 
subjects. Also, the correlation matrix of voxels used as a 
similarity matrix of clustering methods can be estimated 
by shrinkage method. Due to the fact that the shrinkage 
estimator provides reliable estimates of the correlation 
between the time series of the voxels, its application 
makes it possible to cluster the brain more reliably.
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